![数学建模与数学规划:方法、案例及编程实战(Python+COPT/Gurobi实现)](https://wfqqreader-1252317822.image.myqcloud.com/cover/577/52521577/b_52521577.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.2.7 半定规划
半定规划(Semidefinite Programming,SDP)的目标函数为线性表达式,约束条件包含半正定约束。在给出其一般形式之前,我们先来介绍一下什么是半正定矩阵。
半正定矩阵(Positive Semidefinite Matrix):给定实对称矩阵A∈Rn×n,若对于任意n维非零实向量x,xTAx≥0恒成立,则称矩阵A为半正定矩阵。
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_34.jpg?sign=1739145202-yS6PY0yv9ZeSCzH4EOEfxiPaNIXqCf76-0-5d70a90739c886b1e2a1a7668d47a59a)
为方便叙述,定义以下符号:
·Sn:所有n维对称矩阵的集合。
·:所有n维半正定(Positive Semidefinite,PSD)矩阵的集合。
根据文献[36][3],半定规划的标准形式如下:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_36.jpg?sign=1739145202-0abbHn4TMLusSyJGwGF5TCJFNz6MrAIN-0-9b427cc8557c5319636a0df16fb1d87b)
其中,C∈Rn×n;X∈Sn,是半正定决策变量矩阵;Ai∈Rn×n,bi∈R;符号“·”表示矩阵的内积,即,符号
表示半正定,约束
一般被称为半正定锥约束。
下面给出一个半定规划的简单例子。考虑一个最小化问题,令n=3,m=3,且给定下列参数:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_40.jpg?sign=1739145202-29FEHF3XrtwNwwDfD7tpWVI4aG9N83WE-0-db67ecda3a22ba5b1280205526ee7fda)
以及一个3×3的决策变量矩阵:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_41.jpg?sign=1739145202-6cxUQmHH9RAgmdlny1XaG2FuxkM1rgBY-0-ff71a082fb106683dc5c1572c1a0d3cd)
则上述数据就可以构建一个SDP的数值案例。注意,X为对称矩阵,因此xij=xji,∀i,j∈{1,2,3}。
接下来将其写成展开的形式。
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_42.jpg?sign=1739145202-v06R79ZQaeObm8i884Dpo7pIi7uLmMAY-0-e6d0946ad967d291a2ffced1686a9d1c)
其他部分的展开也类似。最终,上述案例可以写成如下形式:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_43.jpg?sign=1739145202-vDRFZNPXsOx8kHFqAt7GJUZUHi4TWnyA-0-3ed46060a94513378b4c21a7bdc5d3cd)