![伍胜健《数学分析》(第1册)配套题库【名校考研真题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/619/27032619/b_27032619.jpg)
第2章 序列的极限
1.求下列极限:
(1).[北京大学研]
(2)f(x)在[-1,1]上连续,恒不为0,求.[华中师范大学研]
解法1:
①
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image062.jpg?sign=1739356231-0da1YPYf75PYNABL6ur0o0YPh1evQiWU-0-85303470ce74fc8abc36cc5601a97d2c)
由①式及两边夹法则,.
(2)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image064.jpg?sign=1739356231-Wn82M8p74v8o5ZgK5tsc7KeTJjCevqDz-0-7db08b40c4814a2b50acc17bad3e1c4a)
故
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image065.jpg?sign=1739356231-KUhrtUvfJfyp9d2rzMF9siMH23MRGL7Y-0-a639c887d44234fab9dffe226234f236)
解法2:
f在[-1,1]上连续;因而f(x)有界
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image066.jpg?sign=1739356231-yuWpf3LRzlw1YAj9ulbttaCaly4WwLQU-0-54083e18c9149b253bf69f4c23358912)
2.设数列单调递增趋于
①
证明:(1)
(2)设 ②
证明:,并利用(1),求极限
.[中国人民大学研]
证明:(1)(i)先设,由①式,
,存在N>0,当n>N时有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image076.jpg?sign=1739356231-NOEetHvDpbyAL61NngL6jnnbyfc41QxL-0-9eb77ce857701b3a78ec98dd2032f390)
特别取n=N+1,N+2,……
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image077.jpg?sign=1739356231-bDxdzm9qwnZZAMB03R9KVj9Dr1Y7ro8n-0-2efe55b1ecd7c9422dc88923b87091c2)
将这些式子统统相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image078.jpg?sign=1739356231-FVxWkAhuO9gg8UOoOBmBQCCSplaRQg5Z-0-0f5ba9e909ffe078aef11a67f233d4d5)
此即
③
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image080.jpg?sign=1739356231-bwFvpYbUopSB94ZWxPECKeaVBd9C2Cw1-0-6ddee66fdcf6e99d1b360655b465e220)
由于以及③式,
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image083.jpg?sign=1739356231-zTLT1vnF7wWEJ5NisJ6f6QU655TjbsPU-0-0f8bf1f5f2852a505f1fa37b93f2407c)
(ii)再当时.由①有
④
⑤
下证递增趋于
,由④知,
.当n>N1时,有
⑥
,即
单调递增.由⑥式有
,从而有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image094.jpg?sign=1739356231-3yQ5MMTOgAaALJP6XhNmcpZhN6nvjLcj-0-d40ec6f285862eb91feff6d6392215d1)
将这些式子统统加起来有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image095.jpg?sign=1739356231-s1BXj4xbivlv6a9hkYcfkCCrjgoAUFgb-0-8866e0cf35e6b18ec2d21b4c8649e98c)
⑦
显然当时,
,由⑤式及上面(i)的结论有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image099.jpg?sign=1739356231-qi1QsHfmRhVUYMZnBXl3lkK3A8VKIJYr-0-caf810b495c615658ed677e5f4e35fdd)
(iii)当时,只要令
,则由上面(ii)可证
(2)单调递减.因为
,所以
.即
有下界,从而
(存在).由
两边取极限有
此即
再求,考虑
⑧
⑨
⑩
由⑨⑩两式
⑪
将⑪代入⑧得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image117.jpg?sign=1739356231-5VPv7iwLNb6aZ2BSAwInw5ete42IJQvu-0-3f29b3001bb872d3b52e75be46ab6e02)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image118.jpg?sign=1739356231-Cv47bSX43pZBCDNAF0dNGjgEXPxDPf8S-0-3915497db0205268646f5961e1094c8d)
3.求极限.[中国科学院研]
解:解法1
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image121.jpg?sign=1739356231-6HinS74k4W3vDK9DnZOUaF8eUakU5X4l-0-f2a4d7965aaefdd28fb3ccd35195c6ff)
解法2 设
单调增,又
,则
有上界,故
收敛.
令
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image129.jpg?sign=1739356231-VPdqfJ16E00FctbQOeRuI4XSFUVLpTwS-0-e360518e2c8d6be70257827a74d82689)
得
4.已知,求证:
.[哈尔滨工业大学、武汉大学研]
证明:(1)当a=0时,那么,存在N>0,当n>N时
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image135.jpg?sign=1739356231-ZF1PlD0qeRXFwxJhwlCZ0o0tF55tFqsT-0-a7c06a2e1c31490b0b9c16750eab69e6)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image136.jpg?sign=1739356231-xNwopMyvpHPp9CDC9xJRcrq44DNKvHKU-0-e8e737cd865b90b9c5ba8446183eba08)
(2)当a≠0时.因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image137.jpg?sign=1739356231-rVJA3SDzdxnSnGqAxb1G4xWbpXEw7J4i-0-11e46ce48d8be1b461403cb09a9ff0e3)
令,则对
,存在N>0,当n>N时,有
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image141.jpg?sign=1739356231-YGE6xj3qiagGByuOBV7hPcY6H1atgvZE-0-78fd28de98a0406cbd820df836d3e763)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image143.jpg?sign=1739356231-cdqLXsSWh2CvA0UZbJ3kB5sFx0dMn3AS-0-2a3852893f9a45e2254d7512f70bf43c)
5.设,且
,n=1,2,…,证明
收敛并求其极限。[西安电子科技大学研]
证明:显然有。由
可得
于是
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image150.jpg?sign=1739356231-N25oFYYTeoK9SnX6qAODB77Ux7mU6qZN-0-13688c844e5c78cd219327ae2b7fbf0d)
故收敛,其极限为
6.设,证明:
[上海交通大学研]
证明:因为,所有对任意的ε,存在N,则对任意的n>N,有
则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image156.jpg?sign=1739356231-XflZpnBWYsbI5GuZsZ7hhYLXAiv8HJhn-0-cb58a65f78020b68753eb772426cf6d5)
再由可知左右两侧的极限存在且相等,都等于
7.设求
.[南京大学研、山东师范大学2006研]
解:由于,根据递推关系和数学归纳法可知
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image163.jpg?sign=1739356231-T8jKksl2DS8hw6MWQzb5I3400YvPb9KA-0-40d3a12b29c45d18a9e5d4b2cc10782a)
因此为单调递增有界数列,故存在极限,记为x。在递推关系式中令
,
解得x=2,从而
8.设证明
收敛,并用
表示其极限。[北京理工大学研]
证明:所以对任意的自然数n、P,有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image171.jpg?sign=1739356231-fcSHPcSEx4V07XTgch1hy148RTTYPmeR-0-3b924bdb41597c42a9b27e421c864f50)
当n→∞时,,因为
由Cauchy收敛准则可知
收敛,因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image175.jpg?sign=1739356231-0T2tOz52yJHIJcBvh8n1q1Ja4FhYidzU-0-b6d7744971452e6c85e156aeda54ff0b)
两边取极限,利用等比数列的求和公式,则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image176.jpg?sign=1739356231-Weo1kEdXvDhaeUvlpQH1uhWZY5nDO5Lb-0-464a48efa22eeab1b75beb974215c703)
9.数列
①
求.[湖南大学研]
解:
②
由②式有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image181.jpg?sign=1739356231-dfJys81rbJUFbFThb6IKMH0IcabOYK9q-0-42f9878e3c43c5514bb68f2def4e599e)
把上面各式相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image182.jpg?sign=1739356231-rJS9uxP2L2p9P4a6JAUCITcPQGMraJtg-0-8229d5bf9cdbb231aa647e25e1f2954f)
两边取极限
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image183.jpg?sign=1739356231-2952HB58IrtRh7Q8ehmV1wWcEfLpdAlX-0-7897c86e12b7886370b60d07740674ed)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image184.jpg?sign=1739356231-An5Hae6ZNXrEE5umVISVN12uAWhXoNGu-0-fc712dcfc617eafde2e42a11d7354db9)
10.设是一个无界数列.但非无穷大量,证明:存在两个子列,一个是无穷大量,另一个是收敛子列.[哈尔滨工业大学研]
证明:取充分大的数M>0,则数列中绝对值不超过M的个数一定有无穷多个,(否则
是无穷大量了),记A为
中绝对值不超过M的元素所成集合,则A是含
无限项的有界集
(1)因为满足的有无穷多项,任取一
又使
的有无穷多项.
取,且
,如此下去,得一
的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image197.jpg?sign=1739356231-zS9ohiu7yoV1rZWODpyBHyHN1JYHdBq6-0-21d2eb6423c02e0fccc4ad1e05c3791b)
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image199.jpg?sign=1739356231-XbWFDWW68ez4QBMklm1kLmWx3ofZEu5J-0-cd9e67f85c507d9d57e7d21fac743fab)
(2)若A中有无穷多项是相同的数a.则取其为的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image202.jpg?sign=1739356231-9Yu0OtKmoN7oisOskTcvqdiakh7ei7N5-0-1885441da9a6d02a469062ad0cd67f4d)
是收敛子列.
若A无相等的无穷多项,将[-M,M]等分为二则其中必有一区间含A中的无穷多项,令其为[a,b],取xn1∈[a,b],再将[a,b]等分为二,则其中必有一区间含A中无穷多项,令其为,又再将[a1,b1]等分为二,令含A中无穷多项的为[a2,b2]取
且n3>n2,如此下去,得一子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image205.jpg?sign=1739356231-SLJYWwSbKkUe8fTrhWkez8gyySR35uD5-0-1de9c0f03b5a1ecf6d8c5d05f16bf6b8)
且.由闭区间套原理
于是
的收敛子列,或者A为有界集,应用有界数列必有收敛子列定理,知
必有收敛的子列.