![邱关源《电路》(第5版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(下册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/791/27031791/b_27031791.jpg)
第15章 电路方程的矩阵形式
一、计算题
1.如图15-1所示的非平面线图,选定5,6,7,8,9号支路为树。试写出与所选树对应的各基本回路、各基本割集所含的支路。[华中科技大学2007研]
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image763.jpg?sign=1739301102-9KmlA7VvO8ODOqcsUJy9brsTIYFETpdR-0-5f79ae5f9e41dbb9345c7c78664c02db)
图15-1
解:5,6,7,8,9号支路为树,树支数是5,所以有向图的结点数为n=6,独立割集数n-1=5,支路数为b=9,基本回路数为b-n+1=4。对应题中所选的树,得基本回路矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image764.jpg?sign=1739301102-FyuRfOksGMv7q5rWAhtNR6eew7WDdHIt-0-456dd6c8f72bb906c20325964d4b2981)
所以基本回路为{1,7,8,9},{2,6,8,9},{3,5,6,8},{4,5,6,7,8,9}。对应的割集矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image765.jpg?sign=1739301102-ACkioiuWCeLE3LUKp8s38Rnd952ZnHGm-0-ed126db0e9da4d6f51e25221124eb1d1)
所以基本割集为{5,3,4},{6,2,3,4},{7,1,4},{8,1,2,3,4},{9,1,2,4}。
2.如图15-2所示电路,开关打开,并处于稳定状态,且已知uc(0-)=0,iL(0-)=0。t=0时开关闭合。列出以uc,iL为状态变量的状态方程,并整理为标准形式。[西安交通大学2006研]
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image766.jpg?sign=1739301102-xQQNpkYnigtnENvollbYkzYrAoWsfuPI-0-b32d17918e70940b38ada0e03b908345)
图15-2
解:分析开关闭合后电路状态:
对结点列KCL方程,对含电感、电容的回路列KVL方程:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image767.png?sign=1739301102-FKC12D3V59itpfJCbtDtBmmJ98em7Yo5-0-8113b8ba1c17ba2668bc61dba599c8d9)
进一步有:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image768.jpg?sign=1739301102-yKDT7EkWOMpEJRPEDBT2RyEOKpsZnu4t-0-2e1a853766679585a9e4ed287791fc57)
代入参数并整理成状态方程的标准形式,有:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image769.jpg?sign=1739301102-42aaceY68RkcuUkutUdGGqDrNyg8N6zi-0-9b66ccaa9ffcbac055df4d5c476a5484)
3.已知某网络的基本割集矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image770.jpg?sign=1739301102-AT0MegGwsORYSzxtuU2PiyVDLSua8H9X-0-cca4e228b72e0b60b2504303196b0113)
其对应的支路阻抗矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image771.jpg?sign=1739301102-sWWg1jOEARFGbbKNad3Xhid4MHFjS0YV-0-058bbc78f1b9ce79964ccfce0f9d9003)
试求:(1)基本回路矩阵B;(2)割集导纳矩阵Y;(3)回路阻抗矩阵Z1。[天津大学2004研]
解:(1)在矩阵Q的每一列中,只有一个不为零且为1的列为1、3、5,所以支路1、3、5为树支,支路2、4、6为连支。将给定的矩阵Q按先树支后连支的顺序重新排列如下:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image772.jpg?sign=1739301102-2HWqfHbIZ6kRv8OiHgN1lCcsRUroKgrU-0-4e1db304ce927d43742f894187cd8c29)
若均按先树支、后连支的同一支路顺序排列,我们可以把矩阵写成下列形式:
,且存在BQT=0得到Bt=-Q1T,所以得其对应的基本回路矩阵为:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image774.jpg?sign=1739301102-bp9HhfnJKP8dXjYEiNVdGM2dBxR5gDOU-0-4fec4d4f06c8f069db4de34230838607)
还原为按支路编号顺序的基本回路矩阵:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image775.jpg?sign=1739301102-30ypwLPOBsUFpKBZ72ZYVTQ8qaTaT1ef-0-c2ad3772368c09fbaf194dc62beb9073)
(2)支路导纳矩阵为:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image776.jpg?sign=1739301102-RKgdLvG7DucNpg2YSqqnWNdbQLQrIKYN-0-0d5610e6057785bda42bd08d9adeb2f8)
割集导纳矩阵Y=QYbQT,代入已知量得:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image777.jpg?sign=1739301102-CrGspKkSUMWdY3kjTCqpRUAG67OB1uNg-0-16925ca7d9a2468964b6369b77e0fff4)
(3)回路阻抗矩阵为Z1=BZBT,代入已知量得:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image778.jpg?sign=1739301102-Xn1mQjJdfP9m4qJWLS8vHRmsf67LXU1K-0-58b466f3438f9e69615c847c4658fe11)
4.设电源频率为ω,电路如图(a)所示,其有向图如图(b)。
(1)写出关联矩阵A;
(2)以支路3、4、5为树支,写出基本回路矩阵Bf;
(3)写出支路阻抗矩阵Z(以支路1-6为排列顺序);
(4)写出支路导纳矩阵Y(以支路1-6为排列顺序)。[北京交通大学2011研]
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image779.jpg?sign=1739301102-WMRHH3hcPgYTRXkGpLiSE3aQz9cXk88J-0-eec59f01623619384b1f391348d27461)
图15-3
解:(1)关联矩阵A
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image780.png?sign=1739301102-gW6Yf3EJk3QFlWni9PfEaWqSLKQByLuN-0-b16b86673783fa02ab4c6e62a8a433c7)
(2)基本回路
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image781.png?sign=1739301102-nG0HhRcxjpY0wwMJo962oOChIJdleCCI-0-5430ffa662a39b58a41ecfc23b193bc4)
(3)支路阻抗矩阵
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image782.png?sign=1739301102-QgYvRXsZMQ6vHRPhzvhrro1AiZ5Ndnyq-0-a9fcd98499515630cac80f9a549fb1d4)
(4)导纳矩阵
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image783.png?sign=1739301102-e3TxcJTn0kkaace3UVNFmsp4c5AfJmRW-0-0b0b303b3cd3c9a74801eb9e3f0c6880)
5.如图15-4所示正弦电路中,已知,
,
,
,
A,
V。(1)选定参考点如图所示,将电路作必要的等效后写出关联矩阵A;(2)写出支路导纳矩阵和节点导纳矩阵;(3)用节点电压方程求节点①的电位。[北京交通大学2009研]
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image790.jpg?sign=1739301102-QNfZTY1D6k50cj1f76w6kjwDV8LwERlV-0-1292e4ac70c990e451f794caa5ccfb20)
图15-4
解:(1)根据题意,令,
,画出等效电路如图所示,可得:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image793.png?sign=1739301102-f1tjSjJeO1oH5r0Yea2F8hJYFyOw2UNG-0-60194d3e90d0f6223f055dd54602d71e)
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image794.jpg?sign=1739301102-eQYWIAds62oye7In313PE3HU67P6OYbg-0-5a54216bd4ffbb27840beedb02b6219b)
图15-5
(2)支路导纳矩阵:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image795.png?sign=1739301102-PdxQ125yzFtOQBMOPgwvN8L4KOO48Xhf-0-e701ba402fa367df69fb7cf05c968c58)
节点导纳矩阵:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image796.png?sign=1739301102-xPGmo3b7RKEd0J5Ixz6KXqRftb2EZlaT-0-50256e4d7feb8df5868b8991bb590ac1)
(3)因为,
所以: ,
又可知:
代入,得:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image803.png?sign=1739301102-KltNvuI6lD64NecDZizWLnJ7TUl2hgHn-0-1ce40df9ca506dfda9e1fffa719babd8)
解非齐次线性方程组,得:
化为三角形,得:
6.已知某网络的基本回路矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image806.png?sign=1739301102-HYTpGxHVynQTGQVeIRxQvcWp621hP1N0-0-e0f676a5894e6f3f98e859f1d40e9832)
其对应的支路阻抗矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image807.png?sign=1739301102-MWFpDRfdnTkQqD6KOB2MoN22r0sXNWAv-0-9bc3ca210cc5cdb162cb8b3d2469861c)
试求:
(1)该网络的回路阻抗矩阵〔ZL〕;
(2)对应于〔Bf〕的基本割集矩阵〔Qf〕;
(3)割集导纳矩阵〔YC〕。[天津大学2005研]
解:(1)
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image808.png?sign=1739301102-CEnNXMx0VWTPEUpilgPUXMnkISF4TU3i-0-6662e80271d4bcfe8c3ed4d446a39c8b)
(2)可得
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image811.png?sign=1739301102-1b8pTzshs7xk6r4idththjDKQjw5WXnK-0-b6b6b4836e9fdb674894ada24f9106dc)
(3)由已知支路阻抗矩阵得支路导纳矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image812.png?sign=1739301102-wsQsafYA61w3raNTytJjsCMYl0prDEho-0-fdd01292986e6a0161c908d80de2dd33)
可得
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image813.png?sign=1739301102-nPwXViTBQM7D2PSgySC00UQO07T0I4vI-0-f3ea9db9e5dc3f1ef9d9e21e7c7a4b5a)