![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
1.2 课后习题详解
1.1 设质量为m的粒子在势场V(r)中运动。
(a)证明粒子的能量平均值为,式中
(能量密度)
(b)证明能量守恒公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image043.jpg?sign=1739447893-ppQgfz4t1PMV8lFJMQpGiqsxtIt4PayW-0-cf2833d258ed022b95698d7829e5e31b)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image044.jpg?sign=1739447893-1qXOx0WRyHxFOgvse6AAsh5rvS3npVL7-0-92b866a1171fe9fa4bc0e322fd067a22)
(势能平均值)
(动能平均值)
其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image049.jpg?sign=1739447893-9sf3uJOfpAjJy0m6IrvIORKoCnxEVVBh-0-e470afd928c1ed3561f99d75292ea8cf)
(b)按能量密度W和能流密度s的定义
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image050.jpg?sign=1739447893-JHnba6bxmB2rErTTAn2fWdckMgqY4Q4g-0-6f1c210af3b9fa03fe47fe732e7cdf7e)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image052.jpg?sign=1739447893-ZpUFbiTtGTG5IIoPvAClbbHthwnvnRbF-0-7399421fb964e036f374f737b5eb2ed5)
1.2 考虑单粒子的Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image053.jpg?sign=1739447893-PycqJrvozV5ODgG3KhAj3We9dgtk6UZX-0-22ce023ee570fb35a7fa3935d07510d2)
V1与V2为实函数.
(a)证明粒子的概率(粒子数)不守恒;
(b)证明粒子在空间体积τ内的概率随时间的变化为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image054.jpg?sign=1739447893-opfYusoIx8A5GfplYtffAo0JC77B38Q3-0-ba0cab1738249a8a595f6e38371e271d)
证明:由Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image055.jpg?sign=1739447893-edH3sdp3g6YPkSZFK6a4t6ohU5RyRLuI-0-6c4d0a06f46d9b948036b78621ea4404)
取复共轭
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image056.jpg?sign=1739447893-rD2ALfEGtcIUZaqxageWbARzgWVQWlp9-0-184b9936bff686d8c1e966d69a049174)
得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image058.jpg?sign=1739447893-YiYqhn2qv4yfFaLSPrG8CrjC6QfRIUtx-0-5bb92da4d5027a8cdf9f692a8d7ee3a6)
积分,利用Stokes定理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image059.jpg?sign=1739447893-eWoxfzhqek744JXz50YBv02WI8WCF9u8-0-ab42b81605e9a5f8edce3de87eddce81)
对于可归一化波函数,当,上式第一项(面积分)为0,而
,所以
不为0,即粒子数不守恒.
1.3 对于一维自由粒子
(a)设波函数为,试用Hamilton算符
对
运算,验证
;说明动量本征态
是Hamilton量(能量)本征态,能量本征值为
(b)设粒子在初始(t=0)时刻,求
(c)设波函数为,可以看成无穷多个平面波
的叠加,即无穷多个动量本征态
的叠加,试问
是否是能量本征态?
(d)设粒子在t=0时刻,求
.
解:(a)容易计算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image077.jpg?sign=1739447893-GTnZ8vUIlKSPhEpPQXivcnF8aDhsWhqn-0-a3ae30fd8c12bdeccd952b870f268389)
所以动量本征态量(能量)的本征态,能量本征值为
.
(b)其Fourier变换为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image081.jpg?sign=1739447893-MAy2B5pmnLaya4gaYBBZmXJRN1a8fT4P-0-79f6bbef939bc25530400e37b3aee00f)
由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image082.jpg?sign=1739447893-dvX1qNlEfTl4kXhuebuEQ1U83DD7Euh0-0-17e2952b1716419773257d97a4d2750b)
(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态
的叠加,所以
不是能量本征态.
(d)因为,按《量子力学教程》1.2节,(5)式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image087.jpg?sign=1739447893-vaZvt69KKkKVVhwt0lo77bnycXjFj0WC-0-d154e7d28d1079ce46e5a411b140d99f)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image088.jpg?sign=1739447893-0bus8WndgsOzKvTq7jIqfqr0SNYkrW3z-0-2db2bb622490805b7a6dce19c6e594be)
计算中利用了积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image089.jpg?sign=1739447893-mL9eDwuGbh5iCNxf4zoI2FdNufZL3fQ3-0-80d9d68caf2086b6ea9b33627a7bb9b6)
1.4 设一维自由粒子的初态为一个Gauss波包
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image092.jpg?sign=1739447893-z1wDXxdMOpoMXRdCXj2ya71u6PwQkHU6-0-3a3cd541fc6c4c9d6b79a0876d6e385c)
(1)证明初始时刻,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image094.jpg?sign=1739447893-p7c0upmQiNV0ZDCDuOKEsUiSjD7Uhy6X-0-307a30958b79e674e35b177a7244ffce)
(2)计算t时刻的波函数
解:(1)初始时刻
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image095.jpg?sign=1739447893-p3xZ0qiPnemZh98rd4xZhhXBvkd2t0Qv-0-0a37d49c608114ae8b89d1124597eb6d)
按《量子力学教程》1.2节,(18)式之逆变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image096.jpg?sign=1739447893-EEI4xeFA0nyWSY3mKsLacMfFsYyGWhoy-0-28f6be94237a66db887938774aaa6854)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image097.jpg?sign=1739447893-An2XwIkJ1l6ws2J2gt3MOyPV2WeDR2k2-0-eeec129102114a268677c0221e36e079)
(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image098.jpg?sign=1739447893-DacDkSMzC62KNdgkm4JP44aonwDKDOKX-0-bc659850fe1945912243fa375db200a5)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image099.jpg?sign=1739447893-8hvJhNY7wEHuz5mkmOon7ZPsmrIOcFIJ-0-b879ba26522125bf4e39188e0804d664)
可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.
1.5 设一维自由粒子的初态为,证明在足够长时间后,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image101.jpg?sign=1739447893-jTwSFZDnE83R2BAUcIeFjhExV4yI5F2e-0-5ca36f7e528131800f3bc80cc3b05412)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image102.jpg?sign=1739447893-6LCJQ8wp87HIwXwsgi0AZHPvVGQ0TyTb-0-5112501b1d820b4cd33ae230902f93f3)
是ψ(x,0)的Fourier变换
提示:利用
证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中
所以时刻t的波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image106.jpg?sign=1739447893-4mHBCo2Z0AQqc7xgZm9nivH9mTozYiAx-0-075e4a3402b856a7875e0c2f1babcfe1)
当时间足够长后(t→∞),利用积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image107.jpg?sign=1739447893-zq0WPzME90cAt862g1bHV99bINNKslcX-0-4bea9f10e0cc9d21c6bbcdeb32a26cce)
上式被积函数中指数函数具有δ函数的性质,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image108.jpg?sign=1739447893-fPP5lp04ZJn0cEfwmJkW9pNJJGrCYUnU-0-5ad81598715c74aa1d937ae77544c2f7)
1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image109.jpg?sign=1739447893-Jbj2dlpu2BkiHZLgfJbn43zaQKSw644E-0-8f122fd53b25a4bfbc57eeb737f0b7bf)
定义粒子的速度分布v
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image110.jpg?sign=1739447893-yyAOfphHCqcLtSclpLPHjH2Vf8GdWwvo-0-656799480a0ba3b2cb6a23d041aeb2f9)
证明设想v描述一个速度场,则v为一个无旋场.
证明:按照上述v的定义,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image112.jpg?sign=1739447893-L6PusT3xKqlIJoCz8YToO0LNsCcqL2Nh-0-991892cb3d215da85998eee3bd413d56)
1.7 处于势场V(r)中的粒子,在坐标表象中的能量本征方程表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image113.jpg?sign=1739447893-JbfiPKsevUosTRxRBT4tXUtmlChkhgY8-0-672a4cb0a3e8656fe99049bf6e11965c)
试在动量表象中写出相应的能量本征方程.
解:利用的Fourier变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image115.jpg?sign=1739447893-Wv1rgv4BPmhfSlXORp3u9C4vT7NuvNXU-0-5c95acfbb076405692ce50f34021a855)
可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image116.jpg?sign=1739447893-L4hPyJBu6oVoTHiEy1qqbEyn78FwbR2M-0-644b81189b091baccc598f48005d5d51)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image117.jpg?sign=1739447893-hdhcY3mGmbpSWZLhDn49HuMwoi56jTNr-0-0dbc748f8616b1b9807d6474ef33e1f0)
所以在动量表象中相应的能量本征方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image118.jpg?sign=1739447893-Fux0zTR8cGmiYSQvG63k9G4weSMVJaJb-0-e9782eb2562715a1ad35ac72df20e086)