![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
3.2 课后习题详解
3.1 设A与B为厄米算符,则和
也是厄米算符,由此证明:任何一个算符F均可分解为
F+与F-均为厄米算符.
证明:因为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image676.jpg?sign=1739447896-QuVxUsTd0NNNA1tsILxamacG0HCeTeGM-0-548c7a20437e0f66daf27a1494012906)
即和
均为厄米算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image679.jpg?sign=1739447896-CUCWGGSBc1fi6ARFAYVNUXjjZjaTvTIO-0-27d707d8eff9543981b0188a95c4de17)
而F+与F-显然均为厄米算符.
3.2 已知粒子的坐标r和动量p为厄米算符,判断下列算符是否为厄米算符:如果不是,试构造相应的厄米算符.
解:对于l=r×P,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image681.jpg?sign=1739447896-deNjzPafclJ4Q4TEWLSsT4Kw524XvEx9-0-bfd1e933b59c02a25a2c243702100135)
同理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image682.jpg?sign=1739447896-LRrt33JngR7R9HxSM8gjKqiGV4OgbtCx-0-23176ea7d34e97f17e80688145e4959d)
所以是厄米算符,
对于r·P,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image684.jpg?sign=1739447896-qHcB8ZjvbXmpVVQ7rVABXoBgTM5mLjiF-0-7092e91f8525a513f6c9baf910f46566)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image685.jpg?sign=1739447896-WZJFON7p5cwlkhENhHRYOm8FEXcPz7tC-0-d86d8cc2f6a92d987025c5fc108a13aa)
所以r·P不是厄米算符,而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image686.jpg?sign=1739447896-wof6GKYsZGrqZSNBw5f0A2v0AAZXHbOU-0-990bf0c42061bc938afccb3a1c59149a)
相应的厄米算符为
类似有,本身非厄米算符,但可以构造相应的厄米算符如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image689.jpg?sign=1739447896-sSvQRwljpS8xMBJfhMKW4FzJgUsx1CXE-0-092f3a53a3e738d78fb8553544a27880)
,本身也非厄米算符,但可以构造相应的厄米算符如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image691.jpg?sign=1739447896-FEY0foAPz3R0NohMB4YaIRsPHJ9wARLU-0-d4dc1c94306cfbcbd740f1064c4f8e86)
3.3 设F(x,p)是x和p的整函数,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image692.jpg?sign=1739447896-3pYENKgD9UBzruuyrWm1XVwSxaSTM0Gf-0-5f8a61099c8e0d0aa6b7fb469ce16aac)
整函数是指F(x,p)可以展开成.
证明:利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image694.jpg?sign=1739447896-ZEY408OgBRy8LKB9k3l0YeWa3jRKnR5G-0-0484fc7501b8cfdb99367b54fb6c2e29)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image695.jpg?sign=1739447896-yF9rw7NIkB9ZAz1KPM8sKyeGkTUY1Ezv-0-e7b95903a2b33a0f5af20adc9cf88ea6)
类似可证明
3.4 定义反对易式,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image698.jpg?sign=1739447896-4DocXwOFJ6YocKL2Gc1lRVZo4aGKH2fb-0-27200200235adc508862193b0f69e97c)
证明:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image699.jpg?sign=1739447896-9LbKWDdz3TduAtu3t5XAuopKIuygurIO-0-f8ef25873974f3e0f6bc16387c2bc15f)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image700.jpg?sign=1739447896-CSHDjaQn7XCwFQ2LXWXoEB9WvbJ493vJ-0-2352c121f129d932661279560b0e2cfb)
类似
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image701.jpg?sign=1739447896-BbwnOXZbT43J4MzgqLmCcmmDaxIA0IJo-0-fc1067d5e65f480d50c232132a4b6c71)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image702.jpg?sign=1739447896-tU3YK1vO7foDnjgHE9XUJWv3KAYtPdTz-0-45aee0fe7227bc245ab4e8b06560b2bf)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image703.jpg?sign=1739447896-snrVXKQBNPTe2Noa4US54gpU3TeiOn7Z-0-e37876c88cf610e2207b008979caea82)
3.5 设A、B、C为矢量算符,A和B的标积和矢积定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image704.jpg?sign=1739447896-OmktCecAlnu86CwuWlD8ZDxY5bnlFYAF-0-c8c2acc2a6d3e5461ef84557683644ae)
α、β、γ分别取为为Levi-Civita符号,试验证
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image706.jpg?sign=1739447896-bdz7uwKPRoo0OSL8DNPxc7CV5XtoVLYR-0-4e65732a987c546725f694e5ce05c5f1)
【证明见《量子力学习题精选与剖析》[上],4.1题】
4.1 设A、B、C为矢量算符,其直角坐标系分量为
A=(Ax,Ay,Az)=(A1,A2,A3)
等等,A、B的标积和矢积定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image707.jpg?sign=1739447896-aRi3H8E5GEssY7HFYQpRrUvY2phUm36a-0-7c0c201d2586e37bb5743b7db329a51a)
等等,试验证下列各式:
A·(B×C)=(A×B)·C (3)
[A×(B×C)]α=A·(BαF)-(A·B)Cα (4)
[(A×B)×C]α=A·(BαC)-Aα(B·C) (5)
证明:式(3)左端写成分量形式,为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image708.jpg?sign=1739447896-6im5FJgxg14ZwOSzzYAYUgoFTgWLvZLL-0-0fe2f1ff69f2c6e9ad4b9d43c4eb0a4d)
其中εαβγ为Levi—CiVita符号,即
ε123=ε231=ε312=1
ε132=ε213=ε321=-1 (6)
εαβγ=α、β、γ中有两个或三个相同
式(3)右端也可化成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image709.jpg?sign=1739447896-rPor2104RHM6mCqQjI4z4ukLM8nBhQIJ-0-5f61ee0ab74b923bf1ce4a681d3b8066)
故得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image710.jpg?sign=1739447896-DDC04nouXaHNjaAg4wmRsr16uzoAonkt-0-54e8d00af1c9679bf6e31e84ae69dd60)
验证式(4),以第一分量为例,左端为
[A×(B×C)]1=A2(B×C)3 A3(B×C)2
=A2(B1C2-B2C1)-A3(B3C1-B1C3)
=A2B1C2+A3B1C3-(A2B2+A383)C1 (8)
而式(4)右端第一分量为
A(B1C)-(A·B)C1=A1B1C1+A2B1C2+A3b1C3-(A1B1+A2B2+A3B3)C1
=A2B1C2+A3B1C3-(A2B2+A3B3)C1
和式(8)相等,故式(4)成立.
同样可以验证式(5).式(4)和(5)有时写成下列矢量形式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image711.jpg?sign=1739447896-KGNp1FKUo9WkSa3AIl3JkiiMphZZRQ68-0-f1159acf72e988a0f671b4d188994df9)
A与C间联线表示A和C取标积.(但是B的位置在A、C之间)如果A、B、C互相对易,上二式就可写成
A×(B×C)=(A·C)B-(A·B)C
(A×B)×C=(A·C)B-A(B·C)
这正是经典物理中的三重矢积公式.
3.6 设A与B为矢量算符,F为标量算符,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image712.jpg?sign=1739447896-WGw3D6yfOs1P9LOBcgVYhppXAZGWxQEK-0-27e52d85f2473b35e5eef7bea2e24275)
【证明见《量子力学习题精选与剖析》[上],4.2题】
4.2 设A、B为矢量算符,F为标量算符,证明
[F,A·B]=[F,A]·B+A·[F,B] (1)
[F,A×B]=[F,A]×B+A×[F,B] (2)
证明:式(1)右端等于
(FA-AF)·B+A·(FB-BF)=FA·B-A·BF=[F,A·B]
这正是式(1)左端,故式(1)成立.同样可以证明式(2).
3.7 设F是由r与p的整函数算符,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image713.jpg?sign=1739447896-jdZY57VkKWwCkdIm1BSRtSq23oMTaOzR-0-191092f77273ff51ae553cfd6965fcc0)
【证明见《量子力学习题精选与剖析》[上],4.3题】
4.3 以,r、表示位置和动量算符,
为轨道角动量算符,
为由r、
构成的标量算符.证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image719.jpg?sign=1739447896-qpdJVObyzpvgNij8eLktIIipFqnIJIAT-0-735a45319af23c148508a44d84296449)
证明:利用对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image720.jpg?sign=1739447896-HB9nX5vPpqFK1t4Aqg8ZE1AmYKB8QVKd-0-e10dbfab2454449d0a8421916d9b7d4c)
以及题4.2式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image721.jpg?sign=1739447896-eMufaKT8jW5V4revjBAlSUvP4UcZhfKw-0-dcba5f971ba19af3c8f92b53bcccbeeb)
此即式(1)。
3.8 证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image722.jpg?sign=1739447896-utaaMIm8fpCT7X0Sz2hAWizHAeYfeoif-0-69c2913af7eed21d33daaebf998e4e75)
【证明见《量子力学习题精选与剖析》[上],4.6题】
4.6 证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image723.jpg?sign=1739447896-QBpN1KGe1ZnMTX9It8jepFG1a7su9sPR-0-63bc8ff47baa1c4a011795bf7961a444)
证明:
(P×l+l×p)x=pylz-pzly+lypz-lzpy,
=[Py,lz]+[ly,pz]
利用基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image724.jpg?sign=1739447896-7xKvnrYZ1imPrWmKCykQxFsfbFekIBSr-0-b3978b028e45fe705ac79fa030926333)
即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image725.jpg?sign=1739447896-J4H0p4XM9LemVB6umYvFlFakruzEgOcP-0-73bba06ea01145bffa3e35150d101a9d)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image726.jpg?sign=1739447896-QAmiPNrw0DRuAI2cPWbZWQjKD6WwKIIF-0-4fcb8c7763ec57f2410292176d2561cd)
其次,由于px和lx对易,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image727.jpg?sign=1739447896-9tvAAExltTtIdGEYIGcA0ZerRpR0TTSN-0-01c98921629561c86eea0868acac00b1)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image728.jpg?sign=1739447896-htIpP8V2roNUO0mF4Y0TlbKGoLyUrpV1-0-252f14be3b7a108bb346cf985e637b1f)
3.9 计算
解:利用代数恒等式可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image731.jpg?sign=1739447896-XlzaSTSegwhxgcaWojmWlAVSoWMbCmYF-0-38bc460cb0489a2f2cfadea399f45117)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image732.jpg?sign=1739447896-1WTc7BEa7reP7488OsItVBf0o2Cwd3zb-0-b43b41a21e5ab1cdbdde392316e1aae9)
3.10 定义径向动量算符
证明:
(a)
(b)
(c)
(d)
(e)
【证明见《量子力学习题精选与剖析》[上],4.5题】
4.5 定义径向动量算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image739.jpg?sign=1739447896-a0fONeGP1EuXlSZykStYkNvaGpBMBGEH-0-c56dc78884061989eb62ffe02dbb6b3e)
试求其球坐标表达式,并求及
.
解:在经典力学中,径向动量就是动量的径向投影,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image742.jpg?sign=1739447896-xaOReY3ElIBLLnfCYuFsUW7vBOTgE3yB-0-b6c00e4b49bb4e290a7c07694452cbfb)
过渡到量子力学,动量算符为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image743.jpg?sign=1739447896-PvNTc7upBenGvt1lrk5Vauf96zHzVIRL-0-6b1b0e0282ca6f9b688c8887404083fe)
由于和r/r不对易,为了保证径向动量算符是Hermite算符,应取
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image745.jpg?sign=1739447896-ED9WspPftnXuJY9a7KDM3WuUq2e3KG4z-0-635a1f4fded09f0050dbea7dce07b14e)
此即式(1).利用式(3),易得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image746.jpg?sign=1739447896-qi29vVoSggpozSInejLl0n8Vo0h6OfbN-0-ef57a106f469cce80a8e4b1d7f44053b)
(4)
此即的球坐标表达式.
利用式(4),容易算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image749.jpg?sign=1739447896-DGSAsQkWYdZ12JfSHhCoGOl2yubsSiMc-0-facadf538a40f6438990093673f5293b)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image750.jpg?sign=1739447896-Oo9d6GmaMd6XtPIGG8alfBmUyEgNlGkO-0-7a3d33e240c316548bc9021ee094b8b1)
3.11 利用不确定度关系估算谐振子的基态能量
解:由于一维谐振子势具有对坐标原点的反射对称性,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image751.jpg?sign=1739447896-kmptwuYDcbUNvteYeaYejkeR5y1jXZc7-0-baf4fd299a9c021ef4bb6e8854557241)
因而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image752.jpg?sign=1739447896-QK3B4WW23qaMe9XzAsLWxzqGgzgt4SXU-0-e8b93bd84a159068816040f1df6a2493)
所以在能量本征态下
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image753.jpg?sign=1739447896-LrlokxZf7dBD9PFoSV75APcP2YrkTaog-0-bfaf72fe2a1553a7d96bb1e7ef9aef21)
按不确定度关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image754.jpg?sign=1739447896-VaN8iXCnMrMaBLvdZKCW2eiNvpi2jAAR-0-4c0a53c81e41b05d1f19d41343b95c38)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image755.jpg?sign=1739447896-KZWvfRoLLwHB3NC0pg6F5SLLDm8dpasn-0-1ece8ce861d07c59859d96feaf54363f)
它取极小值的条件为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image756.jpg?sign=1739447896-hzJdOaMsQy2vAvLbwC5YZpVA6kRFkJDU-0-3ecd157d82c02684ffce5adfde27824b)
由此得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image757.jpg?sign=1739447896-d3HQZSBnDeP49JqmxqOxaZKop6y6YT7G-0-b078c667e5bafc10d396e43f8063c359)
用此值代入(3)式,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image758.jpg?sign=1739447896-Qbm0i7Tkmn9dVOYXaCKRuLS8Hjp1W2YI-0-ac683e26e46e861d49c9902d9a4ca52f)
所以谐振子基态能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image759.jpg?sign=1739447896-XDaEGCxkeqv5vZwIZTqMNXL4MnzNPU2l-0-be9521c9d48ecf1df2249af00282a3a6)
3.12 证明在离散的能量本征态下动量平均值为零.
证明:体系的Hamilton量为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image760.jpg?sign=1739447896-B4M5n9aWaxsocdZhN8oVOepkWQgEqIdw-0-c85f020b5b569c377d3a063107a45d4f)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image761.jpg?sign=1739447896-Bqb3Dl0SBuQB6hHB9cmEPF9pMs17vDfL-0-bd4bc6a204d306385774d656220c5462)
对于束缚态,能量本征值是离散的,本征波函数ψ满足并且可以归一化,
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image764.jpg?sign=1739447896-B8JS5TQzDrglvI4suOEsen2z1utHfCVh-0-2f43d59d6535657babebc7affe55c678)
3.13 证明力学量x与F(px)的不确定度关系以Hamilton量
为例,结合3.12题进行讨论
证明:按《量子力学教程》3.3节,不确定度关系(8),并利用(参见3.3题)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image767.jpg?sign=1739447896-qhr3xUxXSoFpDZRtpTgnSvsCyvo29iVk-0-2b039f2c475bb3fba60f84f17be28bd9)
可以得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image768.jpg?sign=1739447896-YciL7tdVmJUoyRoMa73eOJBeDu7VXAD3-0-4b63d135df6a043df54d00bd9928e5ed)
3.14 证明在lx的本征态下
证明:假设ψm是lz的本征态,相应的本征值是,根据角动量的对易关系,
可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image772.jpg?sign=1739447896-IG4wDBVW1s3POgZoqcOnDMpo7CMnthGe-0-bec233c29a32f4e3202a4253c02b2491)
类似,利用可以证明
3.15 设粒子处于状态下,求
解:是l2及lx的本征函数,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image778.jpg?sign=1739447896-0Co7D1zFenptpDRIdSHApp1W2GkJ9YDl-0-5f3f0ad42dd2deb745c2741ee3fb395c)
按3.14题,,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image780.jpg?sign=1739447896-lAl8zeUHPh5N0OPGznGibdwRtFjQHhWZ-0-75e3deceaefef22fa542edf20f46f59d)
其次证明利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image782.jpg?sign=1739447896-l1D3Uqp2m9xf8VoSyAnHzAJf7j950Cw4-0-9f24b22d7c608d9f4ea5cd4158c2144a)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image783.jpg?sign=1739447896-g8DdZHDhs71G4WTQsVDg4sfxonnV4IcC-0-b21342e7d5b7a587ef9fd6223b2f4d12)
再利用,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image785.jpg?sign=1739447896-HWuMzceXNGnvzZLY66WQtaBXxgKr60qz-0-76ccddd5aa254897d12f749e9d34b433)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image786.jpg?sign=1739447896-MUuQx5MhNIE0LakUoM77phM1KuCR8oNx-0-5b6d4d4e3951ce3220d115ffba5a6c89)
3.16 设体系处于状态(已归一化,即
(a)lz的可能测值及平均值;
(b)l2的可能测值及相应的概率;
(c)lx的可能测值及相应的概率;
解:Y11和Y20是l2和lz的共同本征函数,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image789.jpg?sign=1739447896-3nv5WPfeJ5FCyzL2HV6xJYRdUDgFbXbL-0-652c47dd15ccb2cc531da74612038545)
(a)lz的可能测值为n,0,所相应的测值概率分别为所以lz的平均值为
.
(b)l2的可能测值为和
,相应的测值概率分别为
.
(c)在(l2,lz)表象中lx的矩阵元公式,(参阅《量子力学教程》第9章,169页,(26)式)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image795.jpg?sign=1739447896-1cW7mcCFL8oHvNO7icAV5HLxImrS4YZc-0-386808ee75b8e85d3d31e7e553ab8923)
可求出l=1的3维子空间中的矩阵表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image797.jpg?sign=1739447896-1t9zrIA9nJnFe6k9qXtDJvklQ5jmmRqR-0-1ae18c05a4c0b45301bfa4f9f9739dea)
由此可求出其本征值和本征态如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image798.jpg?sign=1739447896-tlE5hdrppzoHpRaIWkVaKjhDxrSACby7-0-fc9f4d11eb85fd43ab419f08c9bbc958)
Y11态按这3个本征态展开的系数分别为,所以在c1Y11态下,测量lx得
的概率分别是
.
类似在l=2的3维子空间中,的矩阵表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image803.jpg?sign=1739447896-hniTuQp8EYDKJjdDv9m7oV9LQ5iGh0xq-0-6a08b71408ceefd01918bcdc797a436f)
由此可求出其本征值和本征态如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image804.jpg?sign=1739447896-lAv1pJcVq6BaJoVQfkfzD6ZQm3Rn2SOz-0-11230d79b94f5d694c9971fbff83fce0)
Y20态按这5个本征态展开的系数分别为,所以在c2Y20态下,测量l,得
的概率分别为
而在
态下测量得lx的可能值和概率分别为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image810.png?sign=1739447896-VA41BZy9hPkTxZLxRXI4PNqaqvPWv2qW-0-97d517ca9ef377412793fbf189e8227c)
3.17 算符A与B不对易,
证明
(对于A与B对易情况,即C=0,显然)
【证明见《量子力学习题精选与剖析》[下],3.7题】
3.7 设算符A与B不对易,[A,B]=C,但是C与A及B对易,即[A,C]=0,[B,C]=0.试证明Baker—Hausdorff公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image814.jpg?sign=1739447896-sa37V11tAqakSuzpZJ3ElHG1ylv3N16N-0-8d25a80da414d6856662574d4452390c)
证明:引入参变数λ,作
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image815.jpg?sign=1739447896-knsDIfcpRt6xeAUwTxjEJXcZjJoemVqe-0-25df872e2b57ea579f3af3463bddc2e7)
注意f(0)=1,f(1)=eAeB.上式对λ求导,得到
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image816.jpg?sign=1739447896-zxbkTZawZxLstIvIINmFk2J634lhVdPf-0-f40f7fe7703648a92f4469e744c00648)
而根据题3.6式(3)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image817.jpg?sign=1739447896-lR6SeYOXii1M1geoK4KqyhK9rmDswM4E-0-5afb4cfe813dd19ead7eada185c58211)
代入式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image818.jpg?sign=1739447896-zHE28EV5rSrb5GatcTbss5tTRceNBs6W-0-21d530a67c61a74f6b8c407d73982fdb)
以f-1(λ)乘之,得到
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image819.jpg?sign=1739447896-o0HGczpBeOmETdqTYqDTYXMcqlCDKEOi-0-8ea6b7cf2dea4f0501fdb98e630c0c77)
积分,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image820.jpg?sign=1739447896-VKA2lnJBmgD9nPZOGPkiPHZE2aOLeUub-0-275097db2260e57753f387215f21669a)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image821.jpg?sign=1739447896-Ern4vxSxCqrlhFlpkNryFkQaTJ5WLzDu-0-700a4fd1383fca0920a6ec74a404d767)
由于f(0)=1,故得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image822.jpg?sign=1739447896-veZ5xnDxDnkukVuWTuO1CNHPkIqxu4G9-0-1109782944aaaafee4dcccc37edfb44a)
以右乘上式,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image824.jpg?sign=1739447896-55tJIqMXxYeUx7DTXXXyDmFbLHsG1Xoo-0-3443114078f601507ad789162f628697)
如令A→B,B→A,则C→[B,A]=-C,上式变成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image825.jpg?sign=1739447896-XnA4kLNAF2azITmTDzAJIKa3jJdhgn70-0-a1cdb6e733e7e5acbb1d0e590b91c9ae)
式(6)和(6′)中取λ=1,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image826.jpg?sign=1739447896-OofOyOFkQNSuVwO41WohKU4Pm7mbpz1j-0-7c21f7b62bd432fad9f2373fed7b21f3)
如A、B对易,则C=0,上式即还原成题3.1式(4).
3.18 设A与B是两个不对易的算符,α为一个参数,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image827.jpg?sign=1739447896-Wsv9jvM2r8FwrwPwcalKK7jkAlOQ6bUi-0-462d04421cdd716e7adff49657799545)
【证明见《量子力学习题精选与剖析》[下],3.5题】
3.5 给定算符,令
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image829.jpg?sign=1739447896-C9KNTQsq5Zwe5PKJbfZ7XdVTOIVJjSL3-0-ce4f7e260c01430974216c43c0f897a0)
证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image830.jpg?sign=1739447896-RkPR0fY0Wa2RC7RQ6MuCL5o427hosFqk-0-26f75b6306be98e228a550d16681c4d5)
证明:引入参变数ξ,作
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image831.jpg?sign=1739447896-gkTv1qtxorh4C3zyNKrkEoeKzxo9tWFj-0-3f29c152249ca35e7a9be08d9fc403b2)
则
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image832.jpg?sign=1739447896-IufdfOt3LBmkTTN8M35NM8VZoQPmK1cL-0-c0bd243cf607f694f0d9b00888393f48)
对ξ求导,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image833.jpg?sign=1739447896-kGXevckOW2CHnK0p3WmbfxtKurIweHJS-0-838ac482a743f23f0dc175be21ffdb74)
根据Taylor公式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image834.jpg?sign=1739447896-eIQz2Bc84Y7GVcz3uJSPjhdJnnASml6Z-0-1779422c4ea078be7c9399f81ae3ab4b)
而由式(3),令ξ→0即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image835.jpg?sign=1739447896-s6j1cKkHekqImXt1Na1eId49HBDH5DhR-0-dc7f171a561560708367abe3c712b1b4)
代入式(4),并顾及式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image836.jpg?sign=1739447896-zYtGIH4xWVIABfBGJ56IYl6oqTATtuDf-0-bb5740518322850fc72bec8514401c7e)
亦即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image837.jpg?sign=1739447896-GmU43eUYIchFWJgrsg4c60OnRQM1viY4-0-c0dbecc4d286020faf9c19f1b4d77bb4)