上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.1.2 矢量场的基本运算
除去矢量除法没有定义外,矢量的加、减和乘都比标量的加、减、乘和除更加复杂。一个矢量A可用一条用箭头指示方向的线段来表示,线段长度表示矢量A的模A,箭头指向表示矢量A的方向,如图1.1所示。一个模为1的矢量称为单位矢量。取aA表示与A同方向的单位矢量,则有A=aAA,其中
1.矢量加、减法
两个矢量A和B可按平行四边形法则相加,其对角线表示合成矢量C=A+B,如图1.2所示。矢量加法服从交换律和结合律
B和-B可以看做大小相等方向相反的两个矢量,故借助于矢量加法也可以实现矢量减法,如图1.3所示,有
图1.1 点P处的矢量
图1.2 矢量加法
图1.3 矢量减法
2.矢量乘法
一个标量η与一个矢量A的乘积ηA仍为一个矢量,其大小为|η|A,其方向由η的正负来确定:若η>0,则ηA与A平行同向;若η<0,则ηA与A平行反向。
两个矢量A和B的点积(或标积)A·B是一个标量,可看做两矢量相互投影之值,定义为
式中,θ的取值范围为0≤θ≤π。如图1.4所示,当θ为锐角、直角和钝角时,点积标量为正、零和负值。矢量的点积满足交换律和分配律。
图1.4 矢量点积
两个矢量A和B的叉积(或矢积)A×B是一个矢量,它垂直于A和B所在的平面,其指向按右旋法则来确定:当右手四指从矢量A旋转θ角至B时大拇指的指向,如图1.5所示,其定义为
叉积不满足交换律,但满足分配律,有
图1.5 矢量叉积