![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
6.3 亥姆霍兹和基尔霍夫积分定理[1],[3],[4]
6.3.1 亥姆霍兹方程
对于频率为ν的单色光波,其场量可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0005.jpg?sign=1739349513-zqTQ9HN4acqRkN7BulF95nfoqje5DZvc-0-ec4622e2da0fea0283bec22ed0669485)
U(P)和φ(P)分别为振幅和初相位。引入复振幅,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0006.jpg?sign=1739349513-n5wVqzUweJ0CvSeUDmgKQXKaY5slKK2m-0-877905b57f87382a796f684a5237deae)
则可将式(6.3-1)表示为场量复数形式(P)exp(-i2πνt)的实部,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0008.jpg?sign=1739349513-h2ZFBb8jS1eWryIowXnEG6nmHIWYC8ok-0-d59bc870ac65c04eb5ad2996f0c9b363)
光波场u(P,t)在无源点满足标量波动方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0009.jpg?sign=1739349513-UKLAkCwqgwYEfTwBji8Tdzygp29hMnt3-0-93313288e45afb420df6b9ff51752588)
对于单色光,其场量对时间的关系确定,其复振幅满足的空间分量微分方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0010.jpg?sign=1739349513-JGkMxXuwnSuHDEM3cUNrmiJFJre9Qepx-0-ab6f65c1f0e40bd6b855e3a3c05ab275)
其中,k为波数,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0011.jpg?sign=1739349513-wYoWp8mvWuupCYSM1I44ab0cs9jZUmBu-0-98c76011e6339117af0426e83188e585)
式(6.3-5)称为亥姆霍兹方程。光波场中任意一点的场值即亥姆霍兹方程的解,这个解可以通过基于格林定理的积分定理来获得。
6.3.2 格林定理
假设S为封闭曲面,G、U分别是空间位置的复函数,且在S内和S上单值并连续,并存在一阶和二阶偏导数。用G、U构造一矢量F
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0001.jpg?sign=1739349513-2TJU2aGr6vpQEeYFvtcOmXQpY2adC8Iv-0-9607aabcddd536e283c6c6ec2287cbdf)
则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0002.jpg?sign=1739349513-S6IkIWzcqL1zGYVoUcnWJiY7x2B2lXpD-0-5c96e78c61e4b9949b271d318991d99a)
应用高斯定理
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0003.jpg?sign=1739349513-KLQfn9fIOIIhcxQp3CLRNy3SFaS61RNf-0-37f745afc5d42afa75af096695944dac)
上式右边有负号是因为n取S内法线矢量的缘故。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0004.jpg?sign=1739349513-QILKVxVMzCLsuR18PYZPYzZ0nxV917vS-0-ba14b231cc35b6bc3d004b75fab29397)
格林定理是标量衍射理论的数学基础,只要选择合适的格林函数G和封闭曲面S,就可以用格林定理来分析很多衍射问题。
6.3.3 亥姆霍兹和基尔霍夫积分定理
为了利用格林定理来求解亥姆霍兹方程,需要构造格林函数G。设观察点位于P点,S1为包围P点的任意封闭曲面,如图6.3-1所示。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0005.jpg?sign=1739349513-ehrpSDEyzy3230Bo1Yl4xBfbfuG1Xoei-0-7c2f52055cc867621a0ace842dce28e8)
图6.3-1 积分区域
令U为单色光场的复振幅。假设G表示由P点发出的同频率发散球面波,则对任意点P1有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0006.jpg?sign=1739349513-ErVHNXr3W7AckWSyXyKI9Okd5V2XE1Id-0-6185707b83a3c2ee5763f7bb99ad82c3)
r为从点P到点P1的距离。若要运用格林定理,函数G及其一阶、二阶导数必须在封闭曲面包围的区域V内是连续的,但在图6.3-1中封闭曲面S1内,式(6.3-11)所定义的格林函数在P点为奇点,不满足在区域V内连续的条件。因此需要将
P点从积分区域排除,为此以P点为球心,ε为半径作一小球,球面为S2。曲面S1和球面S2所围的区域为V',则在区域V'内,G(P)满足亥姆霍兹方程,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0007.jpg?sign=1739349513-UYqxoDpqjfqIZ7kV37O32phBBPgCvHWN-0-2b7bb800499a4be263985fe4fcf00bfc)
U也满足亥姆霍兹方程,根据格林定理有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0008.jpg?sign=1739349513-cAGnHpUS6P6iORd9KfytzY5eFOnQFm2z-0-5417b1aec1e227b51a80dbf58d38eb55)
显然,在曲面S2上,内法线沿径向,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0009.jpg?sign=1739349513-ixodmZKmsA5iP2Bn0mDAZN2lSYFVZpdN-0-4d0545329fcaa1297cf01f3a3cf0db65)
式中,dΩ表示立体角,Ωε为S 2面相对P点所张的立体角。将式(6.3-11)代入上式可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0001.jpg?sign=1739349513-4mNcps2acs50jCo81vWc38dCQ0EFVdxM-0-37dd07af755737c97adf4ae83900553e)
注意,在得到上式过程中用到条件及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0003.jpg?sign=1739349513-VJM3IPlMjImS4wBezpCxj82myCzmhFaQ-0-271a41afcede0a541e9838ce3662526f)
P1为S2上的任一点。假设ε为无限小量,并且函数U及其导数在P点周围是连续的,则式(6.3-15)右边第二个积分趋于零而第一个积分变为4πU(P)。因此
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0004.jpg?sign=1739349513-dQPttSfyET8uWz5d2IKra4P8W5ztfhjZ-0-99da1cbc467850c3ef55326a15479973)
将上式代入式(6.3-13)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0005.jpg?sign=1739349513-qhWnxgNJOtTfUQnqmIxqGg7MaaIy6gRp-0-ca0d1413b8528e2ecb018505af8064cc)
或者
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0006.jpg?sign=1739349513-fFrw02qF3PtdW4bwBUipbIyq07xNsSgj-0-d181c02ab11d1a417ce1b4f4f2de7094)
式中,r0是位矢r的单位矢量,式(6.3-18)为亥姆霍兹和基尔霍夫积分定理,它给出一个重要结果:如果某一函数U满足亥姆霍兹方程,且函数U及其法向导数在某一封闭曲面上已知,则该函数在曲面内任一点的值都能够确定。