![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
5.3 光纤[21],[58],[59],[63],[65],[67],[68]
前面对平板介质波导和矩形介质波导进行了分析。这里将对广泛应用于远距离、大容量通信的光纤进行分析。通常光纤是一种圆柱形的波导,按照其折射率的径向变化可分为阶跃光纤、渐变折射率光纤等。还有一些特殊的光纤,例如双折射光纤、椭圆光纤、蝴蝶结光纤等。本节将简单介绍阶跃光纤的电磁场理论。
5.3.1 导模与本征方程
由于光纤具有圆柱形结构,采用柱坐标系讨论比较方便。设光纤的轴沿z轴方向,纤芯半径为a,折射率为n1,包层折射率为n2,如图5.3-1所示。
在柱坐标系中,电磁波的电场强度E和磁场强度H分别表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0011.jpg?sign=1738939736-Cl9Sm9G7tNxtEdjsZdKjPC1MjTgCKvkj-0-79610a202308a7e68d93bd6fd6b84f24)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0012.jpg?sign=1738939736-XcQdHGFdsHrAGWzCWGjSFybkfwkyI3jg-0-dee1bb295d4e83cbc85c3efc10de9012)
设时谐电磁波沿z轴传播,则光场各分量与坐标z、时间t相关的因子可以写成expi[ (βz-ωt)],将该因子代入柱坐标系中麦克斯韦方程的两个旋度方程可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0013.jpg?sign=1738939736-qC2egZ5amaBtz2BbsHOs2vtzLZGdyzZH-0-a3d9d78c30bbc7dc1db0a55f26930932)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0001.jpg?sign=1738939736-psIOhPQYOzr4w2XJn2m6cy62ToM9Xc6h-0-d937bac645d9271be874b52e2e05db48)
图5.3-1 光纤的柱坐标系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0002.jpg?sign=1738939736-Iry92cgLPp3WzKX6HvWYde7RSPXqtJz8-0-d4887b7e073696b663af1535bb55bee3)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0003.jpg?sign=1738939736-YFfGDECHAlcNQAx4r9PIdw5o9xBate8O-0-c0fc0100236b6d97eb76b34b4d0d9a93)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0004.jpg?sign=1738939736-ijUIzHglK9wiXunsAXBpwhCgVZ3moxud-0-17518556439224a7d9d874f856299605)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0005.jpg?sign=1738939736-gb2i1563O1Z0dFeDme4f6g9innWvaU5S-0-36125a845987740a06c31f27a39cec18)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0006.jpg?sign=1738939736-mY8fU73GRLVaEvQXAa6g0dpKbXLRV1eY-0-c7a5b808a68b014ed53fa47b163b71ef)
如果介质中没有自由电荷与传导电流,Ez、Hz满足标量亥姆霍兹方程,在柱坐标系中可以写成
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0007.jpg?sign=1738939736-AieK3FHSlJWRUOOzoDzBupJC34EzIYoo-0-8264fc6b1f8c87e4b24de50b6f2401ff)
式中,ψ表示Ez或Hz。
采用分离变量法求解方程(5.3-4),设试探解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0008.jpg?sign=1738939736-OiNxPYtWZTMCY7uekWYSSc1S51ysYKce-0-99b3895479aa954c27d42a5e9bf3163c)
其中,m=0,1,2,3,…,将上式代入式(5.3-4)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0009.jpg?sign=1738939736-m53lqp4mhZGEGRM5pxjH9tu9JqPIUB3v-0-167685dad4a9bd694aae803a67f944b6)
方程(5.3-6)是贝塞尔方程。令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0010.jpg?sign=1738939736-taMerEvKpbQKPoCxonEVljlqTaidBTY4-0-18b1ebb7453adabc445e25c7fc18a3ee)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0011.jpg?sign=1738939736-z5wIGH4cUBzEGQAY3ws7XVwYHVhK0itQ-0-6f3f39635ddabb2918a95b024b739258)
则在芯层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0012.jpg?sign=1738939736-0ieITx41Kv87Wf8fDP2uvuJAcClGgUE1-0-69908de09c5ae8f4e3c4a44d6ed0e283)
在包层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0013.jpg?sign=1738939736-RtnjZPT0Fjg8UfuO0u0udWYW1bMEGKby-0-7def69e5fafaf1b7fa836c7f68c27160)
考虑到在光纤中传播的电磁场必须满足:当r<a时,E(r)有限;当r>a时,E(r)趋于0。因此可以取的解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0014.jpg?sign=1738939736-5xnQnVkLvYMvJU1BvGCdj82pJ7gMU1jt-0-b922990fe7b76576c85e18a4b43200e7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0015.jpg?sign=1738939736-JbfhSJNftrR4yXMNwUywTfRcV0tg3eUt-0-720c520dc72ea5faaf26a1a845b073fa)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0001.jpg?sign=1738939736-u3vxq7t2pf7tOIVgWVvaDKpSXC4T9x9E-0-5ce28570a667e466296002c7824e7fec)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0002.jpg?sign=1738939736-izYuJTDmspbSLb4HGhsOuaAOoxvjjlZw-0-c8b45c5e3fae064535fd1304e06d7847)
式中,。令Ua=U/a,Wa=W/a,Ua、Wa分别代表光纤芯内的横向相位常数和包层内的衰减系数。Jm,Km分别为第一类贝塞尔函数和第二类修正贝塞尔函数(汉克尔函数),图5.3-2(a)所示为几个低阶的第一类贝塞尔函数曲线,图5.3-2(b)所示为几个低阶的第二类修正贝塞尔函数曲线。
在芯层与包层的边界处,电场和磁场的切向分量连续,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0004.jpg?sign=1738939736-lMdZPn0HOJ6ssJSUbNAnKxYdblUbT84s-0-72997d5f98ae9b84d31b7d9fe023fd00)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0005.jpg?sign=1738939736-6bU2F8w1YKYPJy3mHo8fYAq5kioXKxQE-0-89ffbb9f66ee9b26d964b01e9be5ba5b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0006.jpg?sign=1738939736-sBXag5hpTHM6RwYwdnSGKbKoiuBf0UrZ-0-6aee0b3ec08093e4de35e0bbaa55615e)
图5.3-2 两种贝塞尔函数曲线
将式(5.3-9)代入式(5.3-10),得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0007.jpg?sign=1738939736-KJdKOLj7YU4W2Wug6zYMWxZLwEwHSp2R-0-ac3525daa646999114510463361ffb44)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0008.jpg?sign=1738939736-T9tCkc1kQRdT93RYKQwmyGq77hwv38kx-0-cac63c793bf44cb7ad8ca59741da8ca9)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0009.jpg?sign=1738939736-4SkOHVzkb1bIOsv3fDbeRV2KWJckoPDz-0-f6b981824c56ed3f8e5ffa309fca04e9)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0010.jpg?sign=1738939736-kCpnCBH9sji3GJaqKnlxy7nRxCk8mtsc-0-740374885e10bada4c5e433fa032bb28)
这样,可以将纵向电场分量和纵向磁场分量表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0001.jpg?sign=1738939736-btCUxzmO0KXYFHGqdb0h2dxfTq1VfS0g-0-de42d7f2e5594b9dddb1af8600cd70d0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0002.jpg?sign=1738939736-f2adq7JpDnfGOTsq8osJRm3yScVlvib9-0-3ee21a3fcdac96be5cfaacac9fdf593a)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0003.jpg?sign=1738939736-Fmrs62687g6ozYJVJkkCyzKd7U1dNRVJ-0-8e211fea0dc3516636a551723fe4fda0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0004.jpg?sign=1738939736-DK9yGoN54Na1Yb4QEHdBMxUNPQTtCJtc-0-a6928df3b83f18e87038e4a661a04efd)
上面表示中略写了各项共同因子exp i[ (βz+mθ-ωt)]。求出纵向分量Ez、Hz 后,就可根据式(5.3-2)和式(5.3-3)求出其他横向分量,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0005.jpg?sign=1738939736-mrDrO2iw2O54uijVg4ZhgApvmw9X5c6M-0-fff6ad14198f2d0fc89c1d61b8951a21)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0006.jpg?sign=1738939736-a58DaHcbLAzm8mpLn9xwYXp1pQLf9DUV-0-b4a5808c6f074730e2311df249a0694e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0007.jpg?sign=1738939736-32zatNI0gzrt800HdBg7aG7h5Bc10IHP-0-a02058d9f37134beac5c600b9986dbe6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0008.jpg?sign=1738939736-Cu19nItXRAMmpitnnJCgZaNKPHLBuk6z-0-b8d89c59f24ac4a701a9c19588fed85d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0009.jpg?sign=1738939736-0oCQiyZiazhtXNMZziPdvVeUOMjoAv5p-0-ac168a252a8e8ce3c6c41bedaa39222f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0010.jpg?sign=1738939736-ravkAe94gwLLmxXiiJ6ZqpBMcLgMErDs-0-faab148084c627da5ce1180250b6910d)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0011.jpg?sign=1738939736-ZZ1oPG4L9lz8hpzRFdba9NjaEYYHhwHP-0-8962fda7ba91f47ff19abeb7105ea8c5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0012.jpg?sign=1738939736-r1NUy2vjy7z9Qyhb9QqJpgVrkv6D23bt-0-c0c3c6cb128eb6ff152d0c4e06e5ec0d)
将式(5.3-13)各式分别代入式(5.3-14)中对应式,得到电场和磁场的横向分量,依次写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0013.jpg?sign=1738939736-Shsz0Xk9yS4pwrLURxKsnmBO6NKbJWVi-0-20bf0c6ef3678015a5e170757a6e1310)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0014.jpg?sign=1738939736-T9nzA3B75hTMm1Huod0PVTcDAYDuJt3S-0-2ecec7be2521010d658a0f5f1b68eb03)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0015.jpg?sign=1738939736-1d6kkGlt9g9lnyD6HDX3dNIWbNCRTI0o-0-e1e9f021ccc2bc19d0652e2715c916c5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0016.jpg?sign=1738939736-HKTZXf2ioApBMWRWl0hFpNeJbJbw1ACv-0-9aa2114ba6cc3f38127dbb9a408b885c)
以及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0017.jpg?sign=1738939736-tSxtiQkTrdGamQphVMvuEJvFW6qjY1N7-0-eb53c862114a70d87fc461426c29b006)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0001.jpg?sign=1738939736-DxJE5yNlo3TDW0Nr5md71urfVfum26Ls-0-208f68d1a7d6ae2fac889afac1991bf9)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0002.jpg?sign=1738939736-L6llrGCeu5AGX6SECBDdCmVLBK96PC0z-0-5f5989fb3917c64862c6da33817000e7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0003.jpg?sign=1738939736-fFf754O85ElXhSaKWNoKUy9lPKp9tLzH-0-434a785e7053c6284b5cdc6436d17257)
式中,J、K上面的“·”号表示对r的一阶导数。利用纤芯和包层界面处电磁场连续的边界条件,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0004.jpg?sign=1738939736-HStyPuVzpsGyJ0rjyVtJ3rQCSkQx8MvZ-0-af7f12f8efa58e82a26eb0a304758183)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0005.jpg?sign=1738939736-pTHBYO5ZtoFwQjN1JS9Ftd4BeMC8bXcp-0-d158efaadc60a49ca1fec5f98e3ef99c)
将式(5.3-15c)、式(5.3-15d)代入式(5.3-17a),以及将式(5.3-16c)、式(5.3-16d)代入式(5.3-17b)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0006.jpg?sign=1738939736-xlpiBAWLVgvuBaA9oaT6P5VmSBUC5u60-0-2f5a12fbec83ea8566a3cd136138e610)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0007.jpg?sign=1738939736-wGE2VtYQOsINTEXijMpSnxfZ22084PQk-0-1802e11972c7869d0db7edebc913d0bc)
注意,式(5.3-18a)与式(5.3-18b)右边相等,经过整理得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0008.jpg?sign=1738939736-nTBy6kqB6pyg0jeKgOJ84g9hQqcXp2j0-0-66b887c6d9f3e47d15f32bacc5d05080)
上式即为光纤的本征方程,式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0009.jpg?sign=1738939736-mMfKpq1FxOtyWd5L472rVLV9c3g6JDg6-0-f7f776daad024e46157be88efc33068d)
V称为归一化频率。式(5.3-20)中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0010.jpg?sign=1738939736-tox3D2ONar4keE2w78tZc07JltpGYg1V-0-1c83bf76afbc4d22f0e25c21c7304ab0)
将式(5.3-19)与式(5.3-20)联立,可以求出在一定波导结构和波长情况下U、W、β各参量。在弱导条件下,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0011.jpg?sign=1738939736-wNnLbhTtrNkNrlICmGJBz36JLmIhV6dH-0-32cd058f039a1cda4ba1727760d17698)
式(5.3-19)可以化简为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0012.jpg?sign=1738939736-eFgvIEZUCgQalGxViYD78WW63EDiO36Z-0-207e7237b1c5e891c3ecd737e9629bb6)
式中,m=0,1,2,3,…。
5.3.2 导模的分类
光纤中的导模包括TE模、TM模、EH模和HE模,下面依次简单介绍。
1.TE模和TM模
TE模对应于纵向电场Ez=0的电磁场模式。根据Ez表达式可知,对TE模有A=0,进一步可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0013.jpg?sign=1738939736-1sjPEQyAZY77ucVesRPSx79BLv0EGgJV-0-c825953d50df92bdf1bdff07190df6b9)
由于B、β、U、W均不为零,因此上式成立的条件为m=0。此时,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0001.jpg?sign=1738939736-xoyl4hdyabXqKKCsQHCDBLdtUwgPa0QI-0-b7fdf9e4ccd042957b3ce46828dc56c0)
上式为TE模的本征方程。利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0002.jpg?sign=1738939736-Ko7LGfLHjKzhCMCjCkA68ze4Su8gJS9w-0-600a9bb4a3eee00b77bbd923ce27a9d9)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0003.jpg?sign=1738939736-4nXuczURehoanEEAdFDIMT9Qipcs0fP6-0-477629b513a0cb878fc59f0bb0295601)
可以将式(5.3-25)表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0004.jpg?sign=1738939736-MkCO6vpjbOka4AAecOgOZ6D1Ws0qTgRD-0-3eb788d683e928dc0ce5f453edc549c4)
TM模对应于纵向磁场Hz=0的电磁场模式。由Hz的表达式可知,对TM模,有B=0,类似分析可得m=0。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0005.jpg?sign=1738939736-CrBzRL4EPLsVA7qs3suj6qv2Q2MsMoAr-0-8d57c906b9a0a53bf484003ff49dbd1b)
上式为TM模的本征方程。
2.EH模和HE模
当m≠0时,A、B都不为零,表明Ez、H z将同时存在,不存在单独的TE模、T M模。这种Ez、H z同时存在的模式称为混合模,其中当Ez起主导作用时,称为EH模;当H z起主导作用时,称为HE模。
在弱导条件下,EH模和HE模的本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0006.jpg?sign=1738939736-RgvGkFk4qVS5Ric1NEQWkaACg7lPMLup-0-64260f98564cdb202a38174b968c2a7f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0007.jpg?sign=1738939736-VfIivazB6XPAFUTVszoJPL2oXGdT72AQ-0-8135d40e3c2b6737b214ca7e9e842923)
利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0008.jpg?sign=1738939736-tHbdiClFqnDC4vn3qdnRLTWfpdzxTGXU-0-34fee7cd4bc114ea6ea7953ece3daaab)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0009.jpg?sign=1738939736-cvSmNTfw32dLpV9VMtuZNEB91zkGY56Y-0-694cb27af41823a603c399eb17db42eb)
化简后得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0010.jpg?sign=1738939736-roKZiBs6zxgfnAiRZ1nzRh74b47iS4iD-0-4a716516646674ff2a2e409e1e882006)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0011.jpg?sign=1738939736-wj5G5yzn4QH7QoadQEW9ytzNL2mRApGo-0-0a8beb2ebaabe4b092beee8026d0ac26)
5.3.3 导模的截止条件和截止波长
1.导模的截止条件
当导模在波导中传播时,主要能量集中在波导芯层,沿纵向无衰减传播,U、W参量均为正数,导模场在芯层为振荡函数,由贝塞尔函数描写;而在包层中,导模场为指数衰减函数,由汉克尔函数描写。
U、W参量均为正数的条件为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0012.jpg?sign=1738939736-0UBHSIOZpRO75SuFNcavpabgldSDNGAW-0-e37db51b3e67f770f0deaa21511f8a9e)
如果,则W2<0,包层中场量的解变成振荡解,即出现辐射模,导致光场能量不能集中在波导芯层传播而截止。W=0为导模与辐射模的临界情况。因此截止条件为W=0,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0014.jpg?sign=1738939736-MKOOSJwVk4kuHkOX6xeNJewSx3CWGXYf-0-8799ae64bb9f3481e04c0211c08f8550)
归一化频率Vc满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0001.jpg?sign=1738939736-m3FH3lxRyRJWB100PCDPYl7E6fQL3C3q-0-5960029a278d6b1ece769b7d834d173c)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0002.jpg?sign=1738939736-frCRdop2Z7TbrvbiaQ7AfPjQVerOSF2o-0-3dbd8b5722eae8f639a74b754c74e01f)
通过本征方程求得Uc,进而确定Vc,最后获得各种模式的截止频率。
2.TE0n模和TM0n模的截止波长
对于TE0n模和TM0n模,因为m=0,所以式(5.3-19)变为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0003.jpg?sign=1738939736-ytvxKvmimEmyO6R0KivPW3x2eIWg3uPU-0-b96bd86feb1406852701e9d87f64944c)
等号左侧前后两个因式为零分别对应于TE0n模和TM0n模。当W→0时,式(5.3-36)要求J0(U)=0,这就是TE0n模和TM0n模的截止条件。因为J0(U)是个振荡函数,它有许多根,不同的根对应不同阶模的截止条件。当n=1时,U01=2.41(U01的下标01表示零阶贝塞尔函数的第一个根),说明当纤芯半径a满足方程U01≤2.41时,TE01模和TM01模就因为截止而不存在了。对于更高阶的模,即n=2,3,4,…可以依次类推。截止时,归一化频率为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0004.jpg?sign=1738939736-dNKMLlnyY3WWROYi2GpZwJHDxEPItYuT-0-528eb5f4f3c04c43e9e97057b5ae6a1d)
当n=1时,对应的模TE01和TM01的归一化截止频率最低。由于U01=2.405,可得TE01(或TM01)模的截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0005.jpg?sign=1738939736-pVnAMeUQtF4ieKn98VD3FhLRUcGxrI16-0-3c621795410c4bf3cc500cbc38fa6761)
当光纤的其他参量一定时,若λ≥λc,则相应的模式不能在波导中传播。
3.HE mn模的截止波长
截止时,W=0。根据HE模的本征方程,当W→0时,式(5.3-31b)右边的渐进特性应区分为m=1与m≥2两种情况。下面就这两种情况进行讨论。
1)HE1n模
当m=1时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0006.jpg?sign=1738939736-oYEBwbrRo1EI0WoXGpi0CO62OEgmKd6B-0-a6b28486e3dc585fb3628c8f3897db2a)
因此,当m=1时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0007.jpg?sign=1738939736-sQekVY66lP4fmCOqJc32kUHBBk6xgysc-0-eab8482030fc1e984b356f0936fad77f)
其解为Uc=0和J1(Uc)=0的根Uc=u1l,u1l表示一阶贝塞尔函数的第l个根。但Uc=0是否应舍弃需要进一步考察。因为当U→0时,J0(U)→1,因此是本征方程W→0时的解,应该保留。这样得HE1n模的截止参数为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0008.jpg?sign=1738939736-01DLehS2M6VTr1yMI75wwcTLpKXExJhr-0-983bb17d533c133c01deef01fbbe61eb)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0009.jpg?sign=1738939736-w3cl7zy41MNjUyyNdujKM8Z0JqFCWdlt-0-8e74b6bbc087503631f071a48dda7c64)
当n=1时,U11=0,对应的截止波长λc(HE11)=∞。说明HE11模没有截止限制,所以称为光波导中的优势模(即该模总是存在的)。
2)HEmn(m≥2)模
当m≥2时,Km(W)的渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0001.jpg?sign=1738939736-rhMlRAmk1KcsEqconCXNAV4EsaSAoOfk-0-2e0ef1df6f053f4b0ca667a942576dad)
利用贝塞尔函数递推关系
2mJm(U)=UJm-1(U)+UJm+1(U)
将式中阶数降1,即m→m-1,得
2(m-1)Jm-1(U)=UJm-2(U)+UJm(U)
因此当m≥2时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0002.jpg?sign=1738939736-PdNH7mFq81daB65D0D6VOU3IiNGsPnN4-0-84f14b601b36791683638b815ad85845)
于是当m≥2时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0003.jpg?sign=1738939736-qgb1eDTwRRsvhbzhgadiJR2ALd12J0cZ-0-ca5f23bf252356651465e5761114c0eb)
上式的解为m-2阶贝塞尔函数的根,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0004.jpg?sign=1738939736-hi3LuhtvNvvHdtEl2hD7w0b53bhuxw0x-0-03b175bf216a87970a84cf7571458f13)
对HE21模,U01=2.405,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0005.jpg?sign=1738939736-BAVnCHvIxTnlw0IKRujpSbaQn36S4BL9-0-32f761ce7fd19df90d1b034abcee4545)
容易验证,HE2n模与TE0n模、TM0n模具有相同的截止波长,它们是简并模。
4.EH mn(m≥1)模的截止条件
根据EH模的本征方程(5.3-31a),当W→0时,该式右边的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0006.jpg?sign=1738939736-M6Pmy4H56FXWbCW1R8w1wL2fSl35ow5c-0-ddd50c5c8f92d53b5586dac5d4baff26)
因此有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0007.jpg?sign=1738939736-DIuUWkaYHDYMRLK4EEjrGRYS6N3dk7Ue-0-1f8b1d8edc5404dd5a5cb4bedfa1ea69)
注意到当Uc→0时,上式的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0008.jpg?sign=1738939736-7vWhw8v9R9L0ec0F0d5zjfIDitZeYCBz-0-cacff5147512beb49236ba1dbc75312b)
可见,截止时Uc≠0,因此当m≥1时,EH模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0009.jpg?sign=1738939736-S48GRSa6WpVwknfVAwdkpulE2pNkMhi1-0-892feaad1fe74668f7a7a8a9cc3b1b3b)
这里Uc≠0表示,Jm(Uc)=0的第一个根要从Uc≠0的根算起。这样,截止参数Uc或归一化截止频率Vc为m阶贝塞尔函数的根Umm,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0010.jpg?sign=1738939736-ePpyoYofAltfaLaSsPHfTMhL1d26mBqQ-0-2374303ee02ab114000bb3d887c55561)
例如,对EH11模,U11=3.832,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0011.jpg?sign=1738939736-jBjfPnqnGEFonPhFYnR4df5uuMxu4B1R-0-70ea126ae3dd381e15ab355ab6912b3c)
5.3.4 色散曲线
光纤中导模的传播特性与U、V、β等参数有关。U、V决定导模光场的横向分布;β决定导模光场的纵向分布。归一化频率V是与光波的频率、波导尺寸及折射率分布有关的无量纲参数。一旦归一化频率V给定后,则根据本征方程可以确定U、W等参数,并进一步获得纵向传播常数β,也即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0001.jpg?sign=1738939736-ilk2WWpDMgVaHc3aY6bunz4dAbbFjw1m-0-2c60aedd93fb98052e1ac8b8a32c0149)
改变V的值可以得到不同的β,从而得到各种模式的β-V关系。另外,波的相速vp和群速vg分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0002.jpg?sign=1738939736-d0yJG4QVmLLdq7RSUOkMVzLy8Lf7tKxK-0-83d4e1f200db6262e4b2509c897ae7c5)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0003.jpg?sign=1738939736-fh2sFvkDKifWYpDtrd7LiTO0WapU0I6W-0-772efafd05b50c4eac924a0808966819)
如果知道β-V关系,就等效于知道β-ω关系,即色散关系。根据色散关系,可以获得不同模式的群速和相速关系。图5.3-3所示为几个低阶模式的色散曲线。图中横轴表示归一化频率V,纵轴表示归一化相位。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0005.jpg?sign=1738939736-I2QPOtOeOwY7MCqBdFkOBq96lmmdCPu0-0-73ffc6dc1fd3d6f4e4e937b368a1810a)
图5.3-3 几个低阶模式的色散曲线