![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
2.4 光在金属表面的反射和折射[2],[5],[20],[21]
2.4.1 金属中的透射光
假设电磁波在介电常数为ε、磁导率为μ、电导率为σ的各向同性介质中传播,根据麦克斯韦方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0002.jpg?sign=1739349344-lYYaBBm0C6sAp9pwmeNIR13dVtkD2TQs-0-698d53de6b87c7914f55cdc9e76329fc)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0003.jpg?sign=1739349344-FGNT37uL0x8mMtOFE5Uib1RVTvY0Gb0m-0-238df33ccadfef1a600aa9d8e258fda9)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0004.jpg?sign=1739349344-ja7VfkqhNReAVl7i76f6D0kIe4ajnC8r-0-4299173bf73485433e1b7da74ab1b017)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0005.jpg?sign=1739349344-zmLToOdYWr6VQEdrfKZ3bcTRB9gKGwXb-0-c419512546e69fbf6620e303abe89d43)
式中,传导电流密度j和自由电荷密度ρ之间满足电流的连续性方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0006.jpg?sign=1739349344-08smWMK19PE6f8pMlsjrF09IHdiMBK8c-0-689e5b5828e3ef48a2308b964d9c3d8f)
由本构关系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0007.jpg?sign=1739349344-PS8q0BYP452vc4WfVu6PnmrkbHQgsste-0-1a3462eb6776f9de30bcb2cab9def6e6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0008.jpg?sign=1739349344-8TeFR1fKsyjmAUR1I9y9p0pGgwzZL0TQ-0-fd1fa4aa4ead643a7be39abe47e84199)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0009.jpg?sign=1739349344-KCt5qqjGopRZPWAaGir4Qsk5XKF53I7z-0-c4f373af28c315ff2ae9be826d7af093)
将式(2.4-3)、式(2.4-5)代入式(2.4-1b)得
▽×H-=σE
对上式求散度得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0011.jpg?sign=1739349344-m6B6zZaaQYKkqbAuST9LpJIkriokFbWG-0-d87c9ce55586ceefe01f7d68ea0894e8)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0012.jpg?sign=1739349344-t6w5egCas2ZdvAnonMwshrfVh3ILaxRg-0-6c289512b28eb15f83935998519b64c6)
故有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0013.jpg?sign=1739349344-2LjJYLw5sPvRvMGVZdFqvyB5xchR8VSn-0-98cef2cd4543b5fe340a63bcf6a56517)
其解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0014.jpg?sign=1739349344-u0oMkNc1VZeREktO4mjFtYE4qe3IZ6jr-0-4578219bdc1689b98152bfcd2e971f11)
其中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0084_0015.jpg?sign=1739349344-vsIZ6wuJHuAGaquvtU14fwKqklCxwxdP-0-b6c964c2d137d0abcbf00a2dc0f2081c)
τ称为弛豫时间。由此可见,自由电荷密度ρ随时间指数衰减。通常τ很短,对于金属约为10-1 8秒量级,因此金属中的自由电荷密度可认为始终为零,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0001.jpg?sign=1739349344-MjwIWRvVa60Us5d2xhEV3tIJDoXHuZMv-0-c5176417553c221b0a34ad16c97ec60c)
金属中的波动方程可表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0002.jpg?sign=1739349344-2bwvCpNtpfH076ngxFN8cq2ZyVw1m5eO-0-fc06b5c4119f54dbb1fd6e81885ff7c4)
对单色平面光波有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0003.jpg?sign=1739349344-mrpj8IxNTwVPGcJ5AvFPZnfQDQI27DwX-0-47684fde65637753c062b288a7ad4018)
将上式代入式(2.4-12)得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0004.jpg?sign=1739349344-39qu5i2cMASRFJHMUaMftfW96FQXzIPJ-0-23ac278d2c1e4ad1de5691d825da5012)
引入复波数k~,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0005.jpg?sign=1739349344-VS2bELVHqjdHYZdgOBE736SQVwI3nk02-0-8df294c0096c009b3eea779d77cf58b9)
再定义复介电常数ε~为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0006.jpg?sign=1739349344-XWyd01GyijsOD53tR83gvqxRQHADyNDP-0-8d52e7e48a7c4710f7e7e228a4155459)
这样得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0007.jpg?sign=1739349344-TplWYK4zmIbVOdWj71MlOuGA0DaIvNa6-0-f75dd999b88f2622180ac682632f41da)
它与介质对应的关系相似。同样,可引入复相速v~、复折射率n~,各自表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0008.jpg?sign=1739349344-g4I8xb8wBLEqkX6wnnwCENpg0pEMen8w-0-7fb9242ff80a04b2d9f452d8b851a271)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0009.jpg?sign=1739349344-krRK62Mx6oixwjcw4nNO5TYzbtOgq7bK-0-d9875a37a031306994d8dfaf14cd9516)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0010.jpg?sign=1739349344-hVXO7wEPOwtMZ4aVlNTsfbiI7c59QKJ0-0-33fb82bd98dfa719e98e067ccc0fcc27)
式中,κ称为衰减系数。取式(2.4-19)和式(2.4-20)的平方,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0011.jpg?sign=1739349344-6NMLXnYK2fZ6Uu9x9vqYSiQP8utRv9qF-0-1b782d7a3865982485f4ddc9d17d5cf3)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0012.jpg?sign=1739349344-5Pk5q4dpvLdCGsUyexxZThNH2EWxiqsV-0-15ca3a533389492164d82e5ab41acc06)
故
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0013.jpg?sign=1739349344-2Wn7m3V5PXH00qRftKKUlvVGD48jLRDR-0-a8718cc4003b6028713d1117b9de1a19)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0014.jpg?sign=1739349344-7fUpdwqUTH7o4OMXCsuUjwIaSB3dFr7H-0-4b36701b81a9e3f91fe32533fec40837)
由式(2.4-23)和式(2.4-24)解得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0015.jpg?sign=1739349344-urW7g84O0XLU6GGBVMFLYnSMEcFWmBkY-0-e93c9f9ab5418a81828a90a07cad28a2)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0016.jpg?sign=1739349344-36JYnRwclLG14CEkLAAxrNP698dO2XaI-0-c8f3afad266ae9646d49cb15e41d2509)
引入复波矢,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0018.jpg?sign=1739349344-7rAAfYJZ2ukuDbTm8dprbF29xGHodnxL-0-40660f1869cd9005e10904f53cc5ba84)
式中,为波矢的单位矢量,k'、k″均为实矢量。通常也将
定义为折射矢量N,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0021.jpg?sign=1739349344-F2DzoJqGQ3aMgiPRBTM1fbbn4ZjZ1zRt-0-485a9a58681e0f01b8651fd938438786)
利用复波矢,可以将金属中电场矢量的波动形式表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0085_0023.jpg?sign=1739349344-SGWqyT2NFFHJ29ofNkcT2SUMpTYozufV-0-76ebf1f84f07979233647b3a964a2b60)
式中,为平面波的振幅,显然振幅沿k″方向衰减,因此也称k″为衰减常数;k'·r为
相位传播因子,k'称为传播常数。k'决定平面波的等相面,而k″则决定等幅面。一般地,k'与k″的方向不同,因此等幅面与等相面不一致,说明金属中的透射波一般是非均匀波。
不妨先看一个简单的情况,即单色平面光波垂直于金属表面传播,假设金属表面为xy平面(z=0),光波沿z轴在金属中传播,此时,k'与k″都沿z轴方向,式(2.4-29)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0002.jpg?sign=1739349344-l3FmSmlpbBDJjDSrFcZTkm1PSQSW4rkW-0-f70ddcdab5f8d418602c9e4f294656b0)
其中,k'、k″分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0003.jpg?sign=1739349344-ufw4ZjT4DL1Gyuw1FsYAOIo5g5lB0i17-0-e452ba7fcb29cff39b5ddfb2e45726ec)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0004.jpg?sign=1739349344-caj0q4LTr0Iu22arinZxwFyXRdTYOJ5J-0-4efdb245e63c189fa188ad0eba7f869c)
对于良导体,σ/(εω)≫1,则有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0005.jpg?sign=1739349344-Egb0tR1hf6Hvk6FSqsCuaR97QxA7V1Bi-0-3621f3665699b848759ce3ca34433c7a)
根据式(2.4-30),在z=z0=1/k″处,振幅降为表面处振幅的e-1,z0称为穿透深度,其值为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0006.jpg?sign=1739349344-wueoamR11dkP3tWH1nDcuD3utp0apV6c-0-b5147879bc27fa3de9dfe990d492866a)
可见,穿透深度与光波频率及导体的电导率的平方根成反比。以铜为例,其电导率约为5.9× 107/(Ω·m),对于可见光,穿透深度约为数纳米。
将式(2.4-30)代入麦克斯韦方程组可以得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0007.jpg?sign=1739349344-nS05h7Ik3Rdp4j53wDWLaiCkqa4lMN0l-0-6db1394c62e34771026ccc070dd5935e)
式中,^为表面法线方向的单位矢量,注意不要与折射率混淆。对于良导体,将式(2.4-33)代入式(2.4-35)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0009.jpg?sign=1739349344-81yUwMqBIEbISJEe6asJ10PQOBYdSoJZ-0-279fb57aebb89addc5d75e25656c338f)
可见,磁场的相位比电场的相位落后π/4。并且
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0010.jpg?sign=1739349344-rXlssKd9X84OvcL1o2zxKDHZWCwwxaDB-0-9b04543e24969c3fe30be06edeb50aa2)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0011.jpg?sign=1739349344-L19t48Gkpy0P6Gx46MRDYLqO98Q0dinY-0-745fba8429d1196b60b0fbc1aa6a8575)
而在介质中,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0012.jpg?sign=1739349344-pw1uMAJYJJS2zYSQSRXb655mkKk3jKGV-0-aebf69a97b27cd449f947fc0d3dc0731)
这说明相对于介质,在金属中电磁波的磁场的作用比电场的作用要大。
下面来讨论一个普遍的例子。假设介质1是空气,介质2是金属,将金属的复折射率写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0014.jpg?sign=1739349344-k4irt2q9IB5Dak5J0ordkHthVNWDYIS9-0-7ce8fede6a0f35c7c90b12c3b5ea2c75)
由斯内尔定律
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0086_0015.jpg?sign=1739349344-M5KrpCTOGLNwVkqiNdwo65AAjPqBusFa-0-853f0bcf290f26a25c04e40ef263c9d1)
因为为复数,因此
也是复数;显然
不再有折射角的简单几何意义。在可见光范围内,金属反射不再满足布儒斯特定律。下面讨论光在金属中的实际折射角。设入射面为xz平面,金属中光波相位的空间变化为
·r,其中
可表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0001.jpg?sign=1739349344-Y9Q6RR0QThKjLLLaAuhUFMVpBSZoXwX1-0-8b954dcf1215cc85f6f8bde698c4ee2b)
由式(2.4-41)和式(2.4-42),可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0002.jpg?sign=1739349344-58p1xj6PrzPVnGTpmWq6riDLJtJXlWWj-0-7bd3a367902054363b627dbdc19eb554)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0003.jpg?sign=1739349344-b7Ani6INXSamRTCeDfjaAIo44DsUJsrp-0-e8bf3c0cf02c070c59323439c59f0736)
为运算方便起见,令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0004.jpg?sign=1739349344-99hdMi60w9rFktLPlP7yZKQQTzxuIMEG-0-3bf99ff605ffd3097d12262137c99aa9)
式中,q和γ都是实数。经过计算,得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0005.jpg?sign=1739349344-5nOTXuFWJAyUGLHb9NeLg9Jmprvsd99Z-0-8b31655c0bd5f416c0dadb2cb7a0da77)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0006.jpg?sign=1739349344-5AKmMAaOAKArrW8mPyEbYg3yBXGZEQ6I-0-49e06c73298a4b414a78fdb150547d56)
于是得到相位的空间变化为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0007.jpg?sign=1739349344-cX9QFpwdsl0Aj3m6N0wn38z30LRZhgDB-0-e32b14c4327c5ee192a9969a95fc0308)
将上式代入式(2.4-29),可以得到等幅面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0008.jpg?sign=1739349344-DprjpDHWQEIMvIsTB3DNiWYKtqU6Otyt-0-de21df3c833be2bb38b9e5a08087265e)
即z为常数的平面。同样也得到等相面方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0009.jpg?sign=1739349344-pqP47uh5Eb6t7lgbyR3sPU2x4LHhIpdd-0-37b9c0002e95ab53497bb04e484b526b)
可见,等相面为平面,设该平面的法线与界面法线的夹角为,则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0011.jpg?sign=1739349344-zbri1RsYLPaQfb3sd06X9foXXP5WtSJG-0-5b8c7ca40b9a49f7aaadb2793fd00f65)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0012.jpg?sign=1739349344-Z74UFE7jU4bOQxvBCyyITaQANIzpeEgF-0-f7ebc191b58e02a0d15a4f2130e3f79c)
则由上式可以得到,光从空气入射到金属中实数形式的折射定律为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0013.jpg?sign=1739349344-gQxjZjoeRAO5pzs2JuiPg33BHCiXStnI-0-456377c7ce78ae60f3711dd6660367c9)
其中为光在金属中真实折射角
为金属的实折射率,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0016.jpg?sign=1739349344-CPSht1h9pWoG33VudViTcKZztSyShk0y-0-08eae6909bed46644267ed78e52e880f)
显然与入射角θ1有关。
2.4.2 金属界面的反射光
假设光从折射率为n1的介质入射到折射率为=n(1+iκ)的金属表面,则反射光仍然在介质中,故反射光还是均匀波。s光和p光的振幅反射率分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0019.jpg?sign=1739349344-kGAz6qLLl9L43c49E41iNTrJmDW4oldA-0-42dfa188b69185433114475c27eeab3f)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0087_0020.jpg?sign=1739349344-R5t0uKi5XeJwvZYVF8viCDWtwCIe6heB-0-d068be67694cd2eab593f9517a1f2f91)
由斯内尔定律和三角函数关系可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0001.jpg?sign=1739349344-tmjQAeiU8LakoBvi8dfz7WlD7u6ozRER-0-86f0890809c42cb261ca186ade33974d)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0002.jpg?sign=1739349344-dBlZahhdpXPxwELRy0Q2TUtuIEUgxu4K-0-7ea893e7600f68f821c8e47301452c5c)
则由式(2.4-53a)和式(2.4-53b)可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0003.jpg?sign=1739349344-Bxk9wzp9RdzPZdYSjD0hrriI9OS5Lfra-0-634b75175760fb0909071660f0edc39b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0004.jpg?sign=1739349344-KPjxIBdjK8dbQf2PdPOjxbPWzpFfIlg0-0-e15f3dd895079ba84ab4449b828f40f8)
s光和p光的光强反射率分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0005.jpg?sign=1739349344-EvU9XNMcCLGvOhYWYix4N0J7oFbHjiMg-0-60c2b2e8ecd01cccf55dfe6fee3f94bc)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0006.jpg?sign=1739349344-E9uMQ7aF7nDrk1Gpx9KXpPOJ5p5lC0lX-0-b85b62f55589b40a58f82b24fade107f)
令δ=δs-δp,由式(2.4-44)可得,当θ1从0°到90°时,δ从180°降到0°;其中,当θ1=θP时,δ=90°,θP称为主入射角,类似于布儒斯特角。当入射角为主入射角时,RP有极小值,但不为零,故光在金属表面的反射不符合布儒斯特定律。相应地引入主方位角ΨP,定义为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0007.jpg?sign=1739349344-AgIpmpWjF5kDKvxS3kXXVwHcZTwTn6Kk-0-68d8c457badb0cc6b58cc62ebfdf87b6)
可以证明[2],金属的光学常数n、κ与主入射角θP及主方位角ΨP近似满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0008.jpg?sign=1739349344-xvRC6TLigCS7JU99RuFeFmAa6Ry2X3iz-0-508c8cbce32d431451c11d9da360cebc)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0088_0009.jpg?sign=1739349344-1EMYcQzNDRP273dz4CVLRv5l8p4xx2i1-0-fcfcc964f891f36fd0f546fee34604dd)
因此,通过对主方位角ΨP和主入射角θP的测量,可以获得金属的光学常数。