会员
统计学习必学的十个问题:理论与实践
李轩涯 张暐更新时间:2022-07-28 20:05:53
最新章节:参考文献开会员,本书免费读 >
统计学习是机器学习的重要分支,本书兼顾了数学上的理论和代码实践,内容主要包括基础知识和统计学习模型。第1章、第2章结合VC维介绍过拟合的本质,并介绍手动特征选择的办法;第3章、第4章从最简单的线性模型出发经过概率统计的解读而得到分类和回归算法;第5章讨论不依赖于假设分布的非参数模型;第6章介绍将核方法作为一种非线性拓展的技巧,介绍如何将该方法应用到很多算法中,并引出了著名的高斯过程;第7章以混合高斯作为软分配聚类的代表性方法,从而引出著名的EM算法;第8章讨论了机器学习的集成算法;第9章介绍的线性和非线性降维方法将会解决维度灾难问题,并且不同于单纯的特征选择;第10章讨论不依赖于独立同分布假设的时间序列算法。
品牌:清华大学
上架时间:2021-06-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
统计学习必学的十个问题:理论与实践最新章节
查看全部- 参考文献
- 10.5 使用scikit-learn
- 10.4 隐马尔可夫模型的EM算法
- 10.3 隐马尔可夫模型
- 10.2 高阶马尔可夫模型
- 10.1 概率图模型和隐变量
- 第10章 处理时间序列
- 9.4 使用scikit-learn
- 9.3 流形学习
- 9.2 核化线性降维
李轩涯 张暐
主页
同类热门书
最新上架
- 会员
超有趣的GPT:AI公子逆袭记
AI(ArtificialIntelligence,人工智能)是如何拥有创造力的?图像和文本生成如何做到以假乱真?什么是ChatGPT?人工智能的未来会怎样?这些问题都会在这个有趣的故事中被一一解答。本书讲述了AI公子为了在心爱的千金小姐的招亲大会中获胜而努力学习的幽默故事。本书讨论了AI与人类学习的相似性,结合AI公子的学习过程讲述ChatGPT核心技术的发展脉络。本书适合对ChatGPT感兴计算机2.9万字 - 会员
解构ChatGPT
ChatGPT的诞生与迭代,昭示着AIGC领域向前迈出了重要一步,以更为拟人的人工智能提高了人机对话效率和自然程度,可能彻底改变人类与计算机的交互方式。因此,大众对于ChatGPT类产品的认识和学习将对自身成长与社会进步大有裨益。为帮助读者快速了解ChatGPT,本书避免使用过多的专业术语和复杂的数学推导过程,而是采用生动的示例和精致的图表,重点围绕ChatGPT的技术变迁、应用变革与挑战变局,图计算机14.4万字 - 会员
GPT图解:大模型是怎样构建的
人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2计算机14万字 - 会员
机器学习中的统计思维(Python实现)
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。计算机18万字 - 会员
智能计算系统:从深度学习到大模型
本书由中科院计算所、软件所的专家学者倾心写就,以“图像风格迁移”应用为例,全面介绍智能计算系统的软硬件技术栈。第2版以大模型为牵引进行更新,第1章回顾人工智能、智能计算系统的发展历程,第2、3章在介绍深度学习算法知识的基础上增加了大模型算法的相关知识,第4章介绍深度学习编程框架PyTorch的发展历程、基本概念、编程模型和使用方法,第5章介绍编程框架的工作原理,第6章回顾深度学习所用的处理器结构从计算机34.9万字 - 会员
洞察AIGC:智能创作的应用、机遇与挑战
《洞察AIGC:智能创作的应用、机遇与挑战》内容分为3篇:第1篇AIGC的蜕变讲述AIGC的发展历史及其背后的智能;第2篇AIGC的应用讲述AIGC在文学创作、日常办公、知识管理、科研出版、工业制造、健康医疗、金融服务、品牌营销领域的应用现状及常用工具;第3篇AIGC的机遇与挑战讲述AIGC的资本与技术前景,同时提出需要注意的风险。计算机13.9万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字 - 会员
机器学习教程(微课视频版)
本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字 - 会员
智能控制与强化学习:先进值迭代评判设计
在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次计算机8.7万字
同类书籍最近更新
- 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI人工智能15.8万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用人工智能8.1万字